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WELCOME TO THE SITE!

The website is still work in progress in terms of writing, content, and subjects covered.
The chapters included so far can be found here. I'll continue adding new content as | go.

If you find any mistakes, typos, or have any suggestions, please open an issue on the book's GitHub
page. Your feedback is greatly appreciated!

A QUICK OVERVIEW OF THE BOOK

AUDIENCE: The book is intended for an audience with little or no background in programming.
This doesn't mean that we solely cover basic topics. Rather, it defines the book's approach of starting

from elementary concepts, gradually introducing more advanced concepts as we progress.

APPROACH: Throughout the book, I've made a conscious effort to distinguish between what's
essential and what's ancillary, with the latter clearly labelled as optional. My goal is that you don't
become bogged down in particular details, while still having the possibility of exploring topics further
if you wish.

TOPICS: The book focuses on the foundational concepts of the language, without pursuing an
exhaustive examination of all its features. My philosophy is that you can easily incorporate
additional features if you grasp the logic of the language.
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INTRODUCTION

We start by covering the essential steps to install Julia and VS Code. The latter is a code editor to write
and execute code in multiple languages. We'll conclude by providing some valuable online resources

for Julia's users.

INSTALLING JULIA

Remark

All the links mentioned on the website are included in Links, located in
the left navigation bar.

To download Julia and access its official documentation, visit Julia's official website. Note that the

installation process depends on your computer's operating system.

INSTALLING VS CODE

Once Julia is installed, you'll need an editor to write scripts and visualize outputs. There are numerous
alternatives in this respect. Our website supposes that you use Visual Studio Code (aka VS Code),
which is free, officially supported by Julia, and runs on any operating system (i.e., Windows, macOS,
and Linux). One of the key benefits of VS Code is the possibility of installing plugins to extend the
editor's capabilities. In fact, you'll need to add the Julia Language Support plugin for running Julia.

Privacy-Oriented Version of VS Code

VS Code is open-source software created and maintained by Microsoft.
If you want a more private alternative that disables telemetry and
tracking, VSCodium is a rebuild of VS Code.

Links to other popular editors can be found on Useful Links, including Vim, Emacs, NotePad, and
Sublime. These editors are officially supported by Julia (except Sublime). | strongly recommend getting
proficient in either VS Code or one of these alternatives. This will allow you to master a single tool

for coding in multiple programming languages.

Warning!



Avoid getting used to specialized editors built for one particular
language, such as RStudio for R (or its newer version Posit). The editors |
mentioned were designed for coding, regardless of the programming
language you choose. Mastering a general code editor will enhance your
coding skills—you'll be able to apply the same tools and keyboard
shortcuts to every language you work with.

JULIA'S RESOURCES FOR HELP

There are two official resources for learning Julia.

1.Julia's official documentation. Written by Julia's developers.

2. Julia Discourse. Official forum for asking questions.

INSTALLING R AND PYTHON (OPTIONAL)

Julia offers a seamless integration with other programming languages like R and Python, allowing you
to export data from Julia, perform specific operations, and then import the results back into Julia. This

interoperability is particularly useful when a desired function is only available in one of these
languages.

For those familiar with R and Python, this note outlines some noteworthy differences with respect to

Julia. Additionally, this cheat sheet provides a quick reference on syntax differences among Matlab,
Python, and Julia.
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INTRODUCTION

In the following, we cover the basic steps for getting started with Julia. As we haven't introduced any
tools available in Julia (e.g., functions), we'll keep the discussion to a bare minimum. Specifically, we'll
limit ourselves to setting up Julia in VS Code and presenting methods to add comments and file paths.

USING JULIA IN VS CODE

The REPL (Read-Eval-Print Loop) is an interactive programming environment that lets users input
commands and immediately obtain outputs through a command-line interface. When you run

[julia.exe], the REPL is automatically activated and displays the prompt, where you can enter

commands.

¥ Screenshot

Documentation: https://docs.julialang.org

Type "?" for help, "]?" for Pkg help.

Version 1.9.3 (2023-08-24)
Official https://julialang.org/ release

Throughout this website, we'll assume that you're working with a code editor, rather than interacting
directly with the REPL. In particular, VS Code will be our code editor of choice. To get started with Julia
in VS Code, you'll need to install its Julia extension. This can be found by navigating to the Extensions
tab, as indicated below by the blue circle.

¥ Screenshot


https://alfaromartino.github.io/

The layout of VS Code displays the REPL at the bottom of the screen, where the code must be written
in the area above it. To execute the code, you'll also need to specify the programming language you're
using. This can be achieved by clicking on the language option located at the bottom corner of the
screen, or by using the keyboard shortcut + and typing "julia". All this is demonstrated in
the screenshot below.

¥ Screenshot

ADDING COMMENTS IN A SCRIPT

In Julia, like in any other programming language, you can include comments in your code. Comments
are text annotations ignored during execution, serving as a means to document your code.

To add a single-line comment, simply precede the text with the |#| symbol. This symbol can be placed
anywhere on a line, with any text that follows disregarded by Julia. Alternatively, you can add multi-line
comments by delimiting the text with [#=] at the beginning and [=#] at the end.

# This is an example of a comment
X =2 # 'x=2' is run, but anything after '#' won't
#= This is an example of a longer comment.

It can be split into several lines, and
can have any length. =#




PATHS OF FILES AND FOLDERS

File management systems vary across operating systems, determining that the syntax for file paths
also differs. To accommodate this, Julia provides two approaches. The first one provides an operating

system-specific syntax. Below, we illustrate its application for a file |C:\user\file.j1|on Windows and

[/user/file.jl]|on Linux/macOS. There's also a platform-agnostic alternative to make your code more
portable, provided by the function. This is the preferred option, as it can be used with any
operating system.

# On Windows (note the double \\)
"C:\\user\\file.jl"

# On Unix-based systems (e.g., macOS or Linux)
"/user/file.jl"

# on any operating system
joinpath("/", "user", "file.jl")

Two special paths have convenient shortcuts that are worth mentioning:

e [@__DIR__|identifies the directory where your script is saved.

For instance, if your script is in [C:\user\julial then|[joinpath(@_DIR__, "graphs")|refers

to[C:/user/julia/graphs].

e [homedir () |indicates the user's home directory.
This refers to [C:\Users\username| on Windows (where "username" is your actual user), and

is the equivalent of [~] on Linux. For instance, you could access your Google Drive's folder

located on either [C:\Users\username\GoogleDrive | or | \home\username\GoogleDrive | by the

command | joinpath(homedir(), "GoogleDrive")]|.

EXECUTING CODE FROM A FILE

You can also work non-interactively with Julia by executing code from a script stored in a file. The

following example illustrates its implementation, running a file located at |C:\user\julia\graphs.j1l

on Windows and at| /users/julia/graphs.j1|on macOS/Linux systems.

include(joinpath("/", "user", "julia", "graphs.jl"))
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FEATURES AND KEYBOARD SHORTCUTS

We present a few keyboard shortcuts and handy features for VS Code. They also apply to its privacy-

focused alternative VS Codium. Remarkably, these features are largely language-agnostic, holding
regardless of the programming language you're working with.

For visual illustration, the features discussed are accompanied by GIFs. To view these GIFs, simply click

"Example", or alternatively press or to open and close all of them simultaneously.

TO RUN A SCRIPT
Select the script to be executed and press

» Example

TO FORMAT EXPRESSIONS AND MAKE THEM MORE LEGIBLE

Select the script to be formatted and press | cui+ | + | cui+f |. Sometimes, activating this tool requires

running it twice.

» Example

TO ALIGN EQUAL SIGNS

This feature requires the VS Code Extension "Better Align". It aligns consecutive lines by using the

equal sign and other symbols as a reference. It's implemented by pressing + IE]
» Example

See also the extension "Cursor Align", which aligns code by clicking the position on each line.

TO EXTEND THE CURSOR VERTICALLY
Hold down + press or

» Example

TO SEE THE DOCUMENTATION OF A FUNCTION

It requires hovering over the function.

» Example

Alternatively, you can go to the REPL, press , and then type the function's name you want to search
for.
» Example

TO AUTOCOMPLETE A WORD



https://alfaromartino.github.io/
https://code.visualstudio.com/
https://vscodium.com/

Start typing a word + press when you see the option list.
» Example

TO INTRODUCE UNICODE CHARACTERS (TAB COMPLETION)
Type a unicode character/command, press + to open an option list, and then choose the

option and press [ Tab J.

» Example

In Julia, Greek letters and math have the same syntax as Latex. To add them, you need to start with [\

(e.g.,[\eq]for[#]) and use Tab completion.

TO SELECT THE SAME WORD MULTIPLE TIMES
Select the word and then press for selecting each additional time it appears. This is useful when

you want to change part of the expression.
» Example

TO HIDE PART OF THE SCRIPT
Given a code block, add at the beginning and at the end.

» Example

When you have several lines indented, VS Code allows you to hide the block automatically. The
following example shows this for a function.
» Example

TO TURN MULTIPLE LINES INTO A COMMENT

Select all the lines you want to interpret as a comment rather than code. Then, press + .
» Example
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REMARKS

We conclude this chapter by reviewing various principles to write code. They represent a minimum set
of good practices that apply regardless of the programming language used. By adhering to these
guidelines, you'll be able to write clear and maintainable code. | suggest incorporating these
suggestions into your workflow from the very beginning, as it'll render the learning process smoother.

Several of the suggestions we present might seem inconsequential to you at this point, or give the
impression that their importance is exaggerated. For small projects, there's some truth to this—they
won't have a substantial impact. However, as projects grow in size and complexity, following these
principles becomes crucial. " It's not uncommon to revisit your own code after a few months (or even
days!) and struggle to understand it. When this occurs, extending the code becomes a daunting task,
often resulting in non-reusable code.

As usual, the devil is in the details. Thus, the challenge lies in interpreting and implementing these
suggestions effectively. Many of them rely on the reader's judgment, as they require a subjective
assessment of when and how to apply them. For example, one suggestion we'll present is to use clear
and descriptive names. However, determining what constitutes "clear" or "unclear" is ultimately a
matter of personal interpretation. Hopefully, the implementation of the suggestions will become
apparent as we move forward and apply these concepts.

WRITE EASY-TO-READ CODE

Code is read more often than it's written. | can't stress enough the importance of this statement. It
has a stark implication: write code that is easy to read, even if this requires additional effort or some
extra verbosity.

If you end up coding extensively in your future career, you'll likely learn this lesson the hard way. |
certainly did. One of the first times | had to reuse an old script, | was completely clueless about my
own code. As a consequence, | had to rewrite the entire script from scratch, as making sense of the
old code would've taken longer.

If you end up coding extensively in your future career, you'll likely learn this lesson the hard way, just
as | did. One of my earliest experiences with reusing old code was a humbling one - | was completely
baffled by my own script, and rewriting it from scratch proved to be faster than trying to decipher the
original code.

Remark


https://alfaromartino.github.io/

If you're concerned that more readable code requires excessive typing,
remember that you can use Tab Completion to autocomplete names.
Additionally, Al tools like GitHub Copilot will suggest code while you
type, thereby also mitigating the inconvenience.

To illustrate this point, suppose you're reading a script that cleans some data. Imagine in particular
that you come across a line that has two possible expressions: and [dropmissing=true]
Even if you're unfamiliar with the language's syntax or the concept of missing data, you could likely

infer the meaning of [dropmissing=true|: discard entries with no values provided. On the contrary,

offers no clue. Although this example may appear somewhat abstract, it actually
highlights how to discard missing observations in R and Julia: corresponds to R and

[dropmissing=true|to Julia. ?

The example also reveals why typing might be tempting: it's short and requires less
typing. However, it's essential to weigh the long-term benefits of readable code. Although typing more

might seem inconvenient in the short term, it represents a minimal effort compared to the future
costs of ambiguous code. Moreover, you may feel confident that you'll remember what you intended
to write, but it's common to be puzzled by code you wrote just days before.

The benefits of clear code become apparent when you read a script written in an unfamiliar
programming language: if the code is well-written and clearly structured, you might grasp the logic
and tasks being performed. >

Several tips arise as a consequence of this. We list them below.

USE NAMES WITH A CLEAR MEANING

Clear names don't only refer to variables and functions, but files as well. In particular, you should

avoid abbreviating. Code editors can be very helpful in this regard, by offering word auto-completion.

This feature requires typing the first letters of each word and then pressing | Tab |. 4

Avoiding abbreviations has the additional benefit of making it easier to substitute expressions. For
instance, suppose you name a variable , and later decide to replace it with a different name. Then,
the substitution process becomes more challenging, as the search will also capture functions like

|replace|and|repeat|

Finally, using descriptive names reduces the need for comments. If the code is self-explanatory,
comments become only necessary for exceptionally complex code or clarifications that go beyond
what's written.

INDENT AND ALIGN YOUR CODE

The implementation details of this suggestion have already been covered in the previous section. For

further details, please refer to that section.

When writing code sequentially, VS Code automatically provides indentation. You can also format a
selected portion of code by pressing + , followed by . Alternatively, to format the entire

script, use the shortcut + + - >


http://localhost:8000/PAGES/01c_vscode/#features_and_keyboard_shortcuts

To illustrate how this feature improves readability, consider the following (somewhat exaggerated)
example.

if x>0 display("x is a positive number") else display("x is a non-positive number") end

function example(a,b)
x=a/10#rescaling x
output=2*b+x

return output

end

if x > 0

display("x is a positive number")
else

display("x is a non-positive number")
end

function example(a, b)
X a/ 10 # rescaling x
output 2 b+ x

return output
end

To further improve readability, | suggest also aligning code blocks. Several plugins in VS Code can
assist with this task, such as "Better Align" and "Cursor Align". Their use is demonstrated below.

this_is_a_variable =1
X =3
another_var = 2

computations_here = x + another_var
more_calcs = this_is_a_variable * another_var

this_is_a_variable =1

X =3
another_var =2
computations_here = x + another_var

more_calcs this_is_a_variable * another_var




FOOTNOTES

1 For real-world examples, read "Brief Story" on this link or the perspective of a former worker from Oracle.

2- Python also tends to employ abbreviations that can hinder readability. For instance, to count the number of
characters of a variable , Python calls| len(str(x)) |while Julia calls | length(string(x)) |

3-One way to learn how to write clear code is through Al chatbots, which are pretty good at providing highly
readable examples.

4 You could eventually use the option of "find and replace", whereby you substitute abbreviations for their full
name. However, this is error-prone, and you may end up replacing unrelated expressions by substituting all words
at once.

> Unlike Python, Julia only uses indentation for readability purposes. It doesn't affect how code is executed.


https://blog.unosquare.com/10-tips-for-writing-cleaner-code-in-any-programming-language
https://news.ycombinator.com/item?id=18442941
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Remark

Throughout the book, | made some deliberate choices regarding
whether and when to introduce certain subjects. Considering this, I'll
include a section called "Overview and Goals" prior to each chapter,
which elucidates my rationale for these choices. The goal is to
contextualize the book's approach, offering readers some guidance on
the best way to engage with the material.

The current chapter introduces the concept of variables and types, covering single-element objects
(numbers and characters) and collections (primarily vectors and tuples). At this early stage, we only
scratch the surface of the topics. In particular, the chapter doesn't cover any object in depth, and
even excludes important ones like dictionaries. The reason is pedagogical: | didn't want to overwhelm
readers with details about objects or types, considering that core programmatic concepts like
functions and for-loops haven't yet been introduced.

In light of this, Chapter 2 should be understood as a minimal background on objects, sufficient for
progressing into the basics of working programmatically.

The main skills you should gain from Chapter 2 are:
 familiarizing yourself with Julia's syntax, and

e distinguishing between scalars (single-element objects) and collections.


https://alfaromartino.github.io/
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INTRODUCTION

This section introduces the concepts of variables and types. We'll also present the notion of
operators, focusing on their syntax. To ensure a smooth learning experience, I've minimized the
reliance on objects that we haven't covered yet. The only one introduced is vectors, whose elements

are enclosed in brackets (e.g., [ [1,2,3]]).

VARIABLES

When a program is executed, the computer stores data in RAM (Random Access Memory). Each piece
of data in RAM is referred to as an object and is assigned a unique memory address. These addresses

are typically represented in hexadecimal format (e.g., | 0x00007e0966dc0ddo ).

Furthermore, every object is associated with a value and a type. Values represent the actual data
contained within the object. In turn, types define the nature of the data stored, providing the
computer with critical information for handling the object internally.

Since directly referencing memory addresses would be impractical, we instead define variables. They
act as human-readable labels for objects, simplifying our interaction with the data. Linking objects
with a variable relies on the so-called assignment operator E| which creates a binding between the
variable name and the object's memory location. ' This allows developers to interact with data
through symbolic identifiers, rather than raw memory locations.

VARIABLES

Variable |—» | Object —> Value

Storage Characterized

Label Location by a Type

To illustrate this process, let's consider executing[x = "Hello"| When this is run, several actions take
place. First, the computer reserves a memory location (e.g., at address [0x1234])) to store the object.
This object is then assigned the specific value ["Hello"] which in Julia is an instance of the type

[sering]


https://alfaromartino.github.io/

At the same time, we're assigning the label | x| to this object, meaning that | x | points to the memory
address [0x1234] This means that, every time we use [x] in our code, we're actually accessing the
object stored at memory address [0x1234]. It's important to note that [x] isn't the object or the value
itself, but rather a reference to the memory allocation [@x1234]. This explains why we can define
multiple labels to reference exactly the same object (i.e., the same memory address).

CLASSIFICATION OF OBJECTS

Objects are typically characterized according to the number of elements they contain, with scalars

referring to single-element objects, and collections referring to objects containing multiple elements.
Below, we outline some objects encompassed in each category.

— Numbers (integers, floats)

Scalars
> | (single-element ——> Booleans (true/false)

objects)

L—» Characters (basis for text)
OBJECTS —» Arrays (vectors, matrices)
— Strings (collection of characters)
Collections L » Tuples
»| (multiple-element

objects) - Named Tuples
——> Dictionaries
L——> Sets

NAMES FOR VARIABLES

Variable names in Julia can be defined using Unicode characters, thus offering a wide range of

possibilities. This feature enables you to use Greek letters, Chinese characters, symbols, and even
emoticons. 2 Underscores [_] are also permitted, which can be helpful for separating words within

variable names (e.g., [intermediate_result]). ® Importantly, names are case-sensitive, so that [bar
and are treated as two distinct variables.

a =2
A =2 # variable ‘A’ is different from ‘a’
new_value = 2 # underscores allowed
B =2 # Greek letters allowed
] =2 # Chinese characters allowed
X =2 # decorations allowed
X1 = 2
=2
1) =2 # emoticons allowed

Warning!



Julia doesn't let you delete variables. Once a variable is created, it
remains in memory until the program terminates. If a variable is taking
up too much memory, you can free up space by reassigning it to a
smaller object.

4
Notation for Variable Names

Julia's developers adopt the convention of using snake-case notation
for variable names. This format consists of lowercase letters and
numbers, with words  separated by underscores. (e.g.,
| snake_case_var1|). Note that this is only a convention, not a language's

requirement.

UPDATING VARIABLES

It's possible to assign a new value to a variable using the variable itself. This approach is referred to as
updating a variable.

X =Xx+3 # 'x' now equals 5

Julia offers a concise syntax for updating values, based on the so-called update operators. They're
implemented by prefixing the assignment operator [=] with the operator to be applied, as

demonstrated below.

X =2

X =x+ 3

X += 3 # equivalent
X =X * 3

X *= 3 # equivalent
X =x-3

X —-= 3 # equivalent

TYPES

Before diving into the intricacies of Julia, it's essential to familiarize yourself with the basics of its type
system. This initial overview will only provide the minimum necessary for the upcoming chapters. A
comprehensive treatment of types, including their role in performance optimization, will be deferred
to Part Il of this website. For now, the focus is on core definition and notation.



Notation for Types

Julia's developers adopt the convention of using CamelCase notation

for denoting types, where every first letter is capitalized (e.g., [MyType ).
Note that this is only a convention, not a language's requirement.

As previously mentioned, types define the nature of values, specifying all the information the
computer needs for their storage and manipulation. To better illustrate types, let's split the discussion
in terms of scalars and collections.

Common numeric types for scalars include [Int64 | for integers, [ Float64 | for decimal numbers, and
for binary values ((true] and [false] values). * Likewise, the type represents individual

characters, serving as the building block for the type. is the standard type in Julia for
representing text, and its values consist of sequences of characters.

Collections, on the other hand, often require type parameters for a full characterization of their
types. These parameters can be incorporated into any type, and have the goal of providing additional
information about its contents.

Type parameters are denoted using after the type's name. For instance, the type |Vector{Int64}
indicates that the collection represents a vector exclusively containing elements of type (e.g.,

[[2, 4, 61). Here, serves as a type parameter. Note that type parameters are optional and

therefore can be omitted when not needed. Indeed, this is the case with the types for scalars

mentioned above.

Type Annotations

You can explicitly declare the type of a variable by using type

annotations, via the [:: ] operator. For example, ensures

that |x | can only store string values throughout the program, resulting
in an error if you attempt to reassign | x| with a value of a different type.

CONCRETE TYPES AND ABSTRACT TYPES

In Julia, types are organized hierarchically, creating relations of supertypes and subtypes. This

hierarchy gives rise to the notions of abstract and concrete types.

An abstract type is a set of types that serve as a parent to other types. The type in Julia is a
prime example of abstract type. It acts as the root of the hierarchy, thus comprising all possible
subtypes—by definition, every type in Julia is a subtype of [Any].

In contrast, a concrete type is an irreducible unit, representing a terminal node in the hierarchy and
therefore lacking subtypes. Concrete types include in particular primitive types, which represent the
most fundamental types that computers use to perform calculations. Examples of primitive types are

|Int64|and|Float64 | which directly map to low-level hardware representations.




Abstract types provide great flexibility for writing code. For example, the abstract type defined
in Julia encompasses all possible numeric types (e.g., |Float64

Int64] [Float32]). By declaring a

i’

variable as programmers avoid unnecessarily constraining their programs to specific numeric
representations or precision.

To demonstrate this hierarchy, we consider the concrete types comprised by [Number |. The names
included in the table match the exact names in Julia. Note, nonetheless, that the full subtype hierarchy
of [Number | is broader than the simplified representation presented. °

EXAMPLE OF THE ABSTRACT TYPE "NUMBER"

hﬂ_\f_@b?ﬁ J

J :_I}_e_z}l_i l 1 Complex E
J—i'fﬁieéé?ﬁ  AbstractFloat
E_é;g_;;lé_d_i E-]_D-)(-)-O-l-: | BigFloat | | Float64 | | Float32 | | Float16

[tnt128| [Int64| [Int32] [Int16] [Int8]

Fe——————————— -

Note: Dashed red borders indicate iabstract types;, while solid blue borders indicate

Bl

concrete types.

OPERATORS

In programming, operators are symbols that represent operations performed on objects. They can be
thought of as syntactic sugar for functions, as we'll see in the next chapters. In fact, almost all
operators in Julia can be employed as functions.

For instance, the symbol [ +]in is an operator that performs the addition of [x]and [y]. Likewise,
the symbols|x|and|y|are referred to as the operands, representing the operator's inputs to perform

its calculation. Operators follow specific syntax rules based on the number of operands they require.
Understanding this syntax will prove useful for several topics covered later on the website. Next, we
define and illustrate the syntax through several examples. At this point, just focus on how operators
are written, even if their specific functions are not yet clear.

e Unary operators: They take one operand, with the operator written to the left of it. ©

Formally, their syntax is [<operator>x|, such as [vx] or [-x].

 Binary operators: They take two operands, and the operator is written between them. ’

Formally, their syntax is[x <operator> y], such as[x + y]or[xAy]for V.




e Ternary operators: They take three operands. Formally, their syntax is [x <operatoril> y

<operator2> z| Ternary operators are rare, which is why the specific operator [x ? y : z]is
directly referred to as the ternary operator. We'll see that this operator performs a

conditional evaluation, returning[y]if[x]is true and [ z] returned otherwise.

FOOTNOTES

T-While it's common to say that "a variable has a specific type", this is a simplification. Technically, it's the value of
the variable that has a specific type, not the variable itself.

2-You can insert Unicode characters by copying and pasting them from a list like this one. Alternatively, you can use
tab completion with the commands listed in the Julia documentation.

3 Not all symbols are allowed. For instance, names with common mathematical symbols like or aren't
permitted. Additionally, numbers are allowed, but they can't be included as the first character (e.g., is invalid).

4 The suffix in these types represents the precision of the number. This represents the maximum number of
significant digits or decimals that a type can accurately represent.

> The subtype [signed]from[Integers |represents positive or negative integers. Although not included in the graph,
there's also a type called [unsigned ], which only accepts positive integers.

6- Operators to the left of the operand are known as prefix operators. Conversely, operators written to the right of
the operand are known as postfix operators, and Julia has a few of them (e.g., |I| to transpose a vector or matrix
which is written as [x']). Despite this, we won't use postfix operators on this website.

/- Operators with this syntax are called infix operators.


https://www.vertex42.com/ExcelTips/unicode-symbols.html
https://docs.julialang.org/en/v1/manual/unicode-input/

2c. Numbers
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INTRODUCTION

The previous section introduced the concept of variables, distinguishing between those containing a
single element (scalars) and collections. This section expands on scalars, exclusively focusing on those
holding numeric values.

NUMBERS

Computers store numbers in various formats, treating integers and decimal numbers as separate
entities. Even within each category of numbers, multiple representations emerge depending on the
intended level of precision. This precision is determined by the number of bits allocated to store
values in memory, which in turn defines the maximum range of values that a data type supports. '

The representation just described extends well beyond Julia, and is intrinsic to how computers operate
at a fundamental level.

In modern computers, numbers typically have a default size of 64 bits, and Julia's default types for
numbers are:

e |Int64 |forintegers.
* [Float64|for decimal numbers. 2

Remark

Julia provides the type as a more versatile option than [Int64]

which adapts to your computer's architecture: defaults to
on 64-bit systems and on 32-bit systems. Since most modern

machines operate on a 64-bit architecture, typically defaults to
[Int64] Note that there's no equivalent type for floating-point
numbers, with Julia always defaulting to [Float64]

It's worth emphasizing that | Int64|and [Float64|are two different data types. Thus, while|1]is a value
with type [Int64], the same value becomes[1.0]as a[Float64]type.

NUMBERS
X 1 # ‘Inted’
1.0 # 'Floate4d'
z 1. # alternative notation for '1.0°




(
Remark

To enhance code readability, you can break up long numbers by
inserting underscores [_|.

NOTATION FOR NUMBERS

1000000
1_000_000 # equivalent to 'x' and more readable

X
y

x = 1000000.24
y = 1.000_000.24 # '_' can be used with decimal
numbers

The type encompasses not only decimal numbers, but also two special values: for
infinity and for indeterminate expressions such as 0/0 ([NaN] stands for "not a number").

Considering this, all the following variables have type [Float64].

FLOAT64
X = 2.5

10/0

<
1]

z = 0/0

julia>

2.5

julia>

Inf

julia>

NaN

BOOLEAN VARIABLES

A distinct numeric type is [Bool], which facilitates the representation of Boolean variables. These

variables can only take on the values |true|and |false| Internally, they're implemented as integers,

with corresponding to [1] and to [0]. Because of this implementation, Julia accepts [1
and | e|interchangeably with [true|and |false]|.

Boolean expressions come into play when evaluating conditions, such as checking whether a number
exceeds a certain value or whether a string matches a specific pattern. These conditional evaluations
yield Boolean values, and can then be employed to control the flow of the program. Some examples of
Boolean values are presented below.



NOTATION FOR BOOLEAN

X =2

y =1

z=((x>y) # is 'x' greater than 'y’ ?

zZ=X>y # same operation (don't interpreted it as 'z = x')
julia>

true

ARITHMETIC OPERATORS

Numbers can be manipulated through a variety of arithmetic operators. These operators are

represented by symbols akin to those in other programming languages.

Julia's Arithmetic Operator Meaning

X +y

XAy

addition
subtraction
product
division

power (z¥)

It's worth noting that all the operators presented above are binary. Consequently, they follow the

syntax|x <symbol> y|, as indicated in our discussion about the syntax of operators.

FOOTNOTES

' For instance, 8-bit integers can only represent values from -128 to 127. Likewise, 32-bit floating-point numbers,
used for decimal numbers, can represent up to 7 significant digits of precision.

2 The term "Float" stands for "floating point" and is how computers represent decimal numbers.



2d. Strings
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INTRODUCTION

This section presents types for text representation, distinguishing between characters and strings. The
coverage will be concise, as the website won't focus on string analysis. However, a minimal coverage is
necessary as string variables are important for tasks like specifying paths, saving files, and other core
functionalities.

CHARACTERS

In Julia, the type is used to represent individual characters. A character [x] is defined by using
single quotes, as in ['x']. Given its support for Unicode characters, encompasses not only
numbers and letters, but also a wide range of symbols. This is shown below.

# x equals the character 'a’
X = 'a'

# 'Char' allows for Unicode characters
x = ! B 1
y = 1 %S‘ 1

Notice that characters must be enclosed in single quotes [' '], even for symbols like €. Otherwise,

Julia will interpret the expression as a variable.

# any character is allowed for defining a variable

g =2 # @f represents a variable, just like if we had defined x = 2
y = # v equals 2

z ='gf # z equals the character

STRINGS

We'll rarely use the type directly. Instead, we'll work with the so-called type [String]. This is an
ordered collection of characters, making it possible to represent text.

Strings can be defined through either double quotes [" "] or triple quotes [""" """] The latter is
particularly convenient for handling newlines, such as when the text has to span multiple lines. '


https://alfaromartino.github.io/

x
|

= "Hello, beautiful world"

X
|

= """Hello, beautiful world"""

STRING INTERPOLATION

String interpolation allows you to embed Julia code within a string, which is then evaluated and

replaced in the string with its value.

To interpolate an expression, you must simply prefix the string with the | $| symbol. If the expression
contains spaces, you'll need to enclose it in curly braces, like |$() | Both cases are exemplified below.

number_students 10

output_text = "There are $(number_students) students in the course"

julia>

"There are 10 students in the course"

number_matches = 50
goals_per_match = 2

output_text = "Last year, Messi scored $(number_matches * goals_per_match) goals"

julia>

"Last year, Messi scored 100 goals"

FOOTNOTES

' For more on the differences between double and triple quotes, see here


https://docs.julialang.org/en/v1/manual/strings/#Triple-Quoted-String-Literals

2e. Arrays (Vectors and Matrices)
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INTRODUCTION

So far, we've explored variables representing single-element objects. Now, we'll shift our focus to
collections, defined as variables comprising multiple elements. Julia provides several forms of
collections, including:

e Arrays (including vectors and matrices)

e Tuples and Named Tuples
e Dictionaries

e Sets

Arrays represent one of the most common data structures for collections. They are formally defined

as objects with type [Array{T, d}] where [d]is the array's dimension and [T]is its elements' type (e.g.,
|Int64|or | Float64 ).

Two special categories of arrays are vectors (1-dimensional arrays) and matrices (2-dimensional

arrays). Vectors are represented by the type [Vector{T}], which is an alias for [Array{T, 1}]. For its part,
matrices use the type [Matrix{T}], which is an alias for [Array{T, 2}]. Although we provide a subsection

about matrices at the end, this is labeled as optional. The reason is that vectors are sufficient for
conveying the topics of this website.

Remark

Julia uses 1 as an array's first index. This contrasts with many other
languages (e.g., Python), where 0 is used as the first index.

VECTORS

Vectors in Julia are defined as column-vectors, and their elements are separated by a comma or a
semicolon.


https://alfaromartino.github.io/

x = [1, 2, 3] #= column-vector (defined using commas or semicolons)
Vector{Intéd} (alias for Array{Intéd, 1}) =#
x = [1; 2; 3] # equivalent notation to define 'x'
julia>
3-element Vector{Int64}:
1
2
3
)
Remark

Arrays can hold elements of various types, such as numbers and strings.
For example, [[1, 2.5, "Hello"]|is a valid vector in Julia, identifying its
elements as having type (recall that encompasses all the
possible types supported by Julia). While arrays mixing types can be
created, they're highly discouraged for several reasons, including
performance.

ACCESSING A VECTOR'S ELEMENTS
Given a vector [x], we can access its i-th element with and retrieve all its elements with [x[:1].

x = [4, 5, 6]

julia>
3-element Vector{Int64}:
1

2

3

julia>

5

julias

3-element Vector{Int64}:
4

5

6

It's also possible to access a subset of 's elements. There are several approaches to achieve this,
and we'll only present two basic ones at this point. The simplest method involves setting the indices

via a vector, using the syntax |x[<vector>] |,



x = [u4, 5 6,7, 8]

julia>
3-element Vector{Int64}:
1

2

3

julia> |x[[1,3]]]| # elements of 'x' with indices 1 and 3

2-element Vector{Int64}:
4
6

julia> # be careful! this is the notation used for matrices, indicating 'x[row 1,

column 3]
ERROR: BoundsError: attempt to access 5-element Vector{Int64} at index [1, 3]

The second approach sets the indices via ranges. These are denoted as [<first>:<steps>:<last>|
with Julia assuming increments of one if we omit [<steps>] To respectively express the first and last

index in a range, you can use the keywords |begin|and|end|

x = [u4, 5 6,7, 8]

julia>
3-element Vector{Int64}:
1

2

3

julia> # steps with unit increments (assumed by default)
2-element Vector{Int64}:

4

5

julia> # steps with increments of 2 (explicitly indicated)
3-element Vector{Int64}:

4

6

8

julia> |x[begin:end]| # all elements. Equivalent to 'x[:]' or 'x[l:end]'
3-element Vector{Int64}:
4

0N O U

MATRICES (OPTIONAL)

Matrices can be defined as collections of row- or column-vectors. If they're created through multiple
row vectors, each row has to be separated by a semicolon [; ] If we instead adopt multiple column
vectors, their elements need to be separated by a space.



Note that row vectors are considered as special cases of matrices, with their elements separated by a
space—they're matrices with multiple columns having one element.

X =1[12; 3u]

**
1

matrix as a collection of row-vectors, separated by semicolons
Matrix{Inté6d} (alias for Array{Intéd, 2})=#

X = [ [1,3] [2,d4] ] # identical to 'C', but defined through a collection of column-
vectors

Y = [1 2 3] #= row-vector (defined without commas)
Matrix{Int64} (alias for Array{Intéd, 2}) =#

julia>

2x2 Matrix{Int64}:
1 2

3 4

julia>
1x3 Matrix{Int64}:
1 2 3

ACCESSING A MATRIX'S ELEMENTS

Given a matrix [X], we can access its element at row [r] and column [c] by [X[r,c]]. Likewise, the i-th
element of a row vector is accessed with [x[1]]. ' Moreover, we can select all elements across the row

by [X[r, :1], and all elements of column [c]by[X[:,c]].

>
1

[56 ; 7 8] # matrix

Y

[4 5 6] # row-vector

julia>

2x2 Matrix{Int64}:
5 6

7 8

julie>

7

julia>
2-element Vector{Int64}:
5

6

julia>
2-element Vector{Int64}:
6

8

julias

5

To access a subset of elements, you must follow the same approaches as with vectors, but applied to
either rows or columns.



X=1[56; 78]

julia>

2x2 Matrix{Int64}:
5 6

7 8

julia>
2-element Vector{Int64}:
5

7

julia>
2-element Vector{Int64}:
5
7

julia> |X[begin:end, 1]]
2-element Vector{Int64}:

5
7

FOOTNOTES

! We could also use this approach for any matrix, as Julia also accepts a linear index for matrices. For instance, a 3x3
matrix accepts indices between 1 and 9. However, unless you want to iterate over all elements of a matrix, the

notation is easier to interpret.
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INTRODUCTION

We continue our exploration of collections, defined as objects storing multiple elements. Having
previously focused on arrays, we'll now turn our attention to another form of collection known as
tuples.

The defining characteristic of tuples is their fixed size and immutability. This implies that, once a tuple
is created, its elements cannot be added, removed, or modified. While these restrictions might initially

seem limiting, they also bring substantial performance gains when working with small collections.

At this point, we'll only touch on the basics. A more in-depth exploration of tuples will follow in Part Il,
after we've developed the necessary tools to understand the role of tuples in high-performance
scenarios.

Warning!
Tuples should only be used when the collection comprises a small
number of elements. Large tuples will result in slow computations at

best, or directly trigger fatal errors. For large vectors, you should keep
relying on vectors.

DEFINITION OF TUPLES

The syntax for accessing the i-th element of a tuple [x]is similar to vectors. Likewise, defining
tuples requires enclosing their elements in parentheses [ () |, which contrasts with the square brackets
used in vectors.

When tuples comprise more than one element, the use of is optional and its omission is in fact a
common practice. On the contrary, single-element tuples have stricter syntax rules: you must use
parentheses and a trailing comma after the element. For example, a tuple with the single

element[10] is represented as[ (10, ) |. This notation differentiates a tuple from the expression [(10) ],
which would be interpreted simply as the number 10.


https://alfaromartino.github.io/

(4,5,6)
x = U,5,6 #alternative notation

julia>
(4, 5, 6)

julia>

4

x = (10,) # not x = (10) (it'd be interpreted as x = 10)

julia>

(10,)

julia>

10

TUPLES FOR ASSIGNMENTS

Tuples are particularly useful for simultaneously assigning values to multiple variables. This is
achieved by placing a tuple on the left-hand side of [=] and a collection on the right-hand side
(either another tuple or a vector). The following examples demonstrate both options.

(x,y) = (4,5)

X,y = 4,5 #alternative notation
julia>

4

julia>

5

(x,y) = [4,5]

x,y = [4,5] #alternative notation
julia>

4

julia>

5

As we'll see later, this technique is commonly employed when a function returns multiple values,
enabling you to unpack the returned values into individual variables.
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The upcoming Chapters 3 and 4 will cover three core tools for programming: functions, conditional
statements, and for-loops. Chapter 3 in particular focuses on functions, which constitute the
backbone of Julia programming. As they're tightly linked to achieving high performance, we'll dedicate
considerable time to discussing their usage.

Our coverage of functions will be organized into three categories, based on who defines them:
i) built-in functions,
ii) third-party functions, and

iii) user-defined functions.

The first two types of functions become available in the workspace via packages, which may be loaded
implicitly or explicitly. This connection between packages and functions leads us into exploring the
concepts together in Section 3b. Instead, user-defined functions are left for Section 3c.

A firm grasp of functions requires understanding variable scope, including the distinction between
global and local variables. By establishing this difference, we'll frame functions as self-contained mini-
programs designed to perform a specific task. Both subjects are presented together in Section 3d. This
perspective on functions will lead to the identification of good practices for using functions, which will
have significant implications for the structure of code as we progress. At this point, nonetheless, it
suffices if you start becoming familiar with this view.

Finally, we'll introduce the concept of broadcasting in Section 3e. Mastering this technique is crucial,
as it lets you seamlessly apply the same function to each element in a collection. Broadcasting is a
widely used technique not only in Julia, but also in other programming languages like Python.


https://alfaromartino.github.io/
http://localhost:8000/PAGES/03b_packages/
http://localhost:8000/PAGES/03c_functions/
http://localhost:8000/PAGES/03d_scope/
http://localhost:8000/PAGES/03c_functions/

3b. Function Calls and Packages
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INTRODUCTION

Broadly speaking, functions can be broken down into three categories:
i) built-in functions,

ii) third-party functions, and

iii) user-defined functions.

This section focuses on i) and ii), relegating iii) to the next section. We consider in particular how to
call functions, which in turn leads us to discuss packages.

Notation for Functions

Julia's developers suggest a snake-case format for function names. This
consists of lowercase letters, numbers, and possibly underscores to
separate words (e.g., |snake_case123]). Note that this is only a
convention, not a language's requirement.

PACKAGES

When you start a new session in Julia, only a handful of very basic functions are available (e.g., those
for sums, products, and subtractions). This is a deliberate choice made by Julia developers, who rely
on packages to incorporate functions into the workspace. In fact, both built-in and third-party
functions are contained in packages—the only difference is that the former are loaded by default.

The approach is not unique to Julia. However, Julia embraces this philosophy more profoundly than
other programming languages. Thus, it doesn't even include standard functions such as averages or
standard deviations, which are instead relegated to a package called [Statistics]. '

This design philosophy is rooted in a programming principle known as modularity. The principle
promotes the development of small reusable modules, rather than large intertwined code. Its main
advantage is to let packages evolve independently, without bugs and deprecations spreading across
the entire Julia ecosystem. The practical implication of this feature is that users need to load several
packages in each session, even to perform simple tasks.

LOADING PACKAGES AND CALLING FUNCTIONS



https://alfaromartino.github.io/
https://en.wikipedia.org/wiki/Modular_programming

The concept of packages is tightly related to modules. Formally, modules are independent blocks of
code, each acting as a separate workspace, that export a defined set of functions. In fact, when you
start Julia, you're implicitly writing your script in a module called [Main].

Packages are a special type of modules, which additionally include information about their
dependencies. Dependencies are defined as the necessary packages that must be loaded to run the
package itself.

Getting access to a package's functions requires loading the package via either the keyword @
or . The primary difference between the two is how functions are eventually called in your code.
If the package is loaded via [import], the function's name must include a prefix with the package's
name. On the contrary, no prefix is needed when the package is loaded with .

Below, we demonstrate each approach by calling the function from the package [Statistics],

This package isn't loaded by default, but it comes pre-installed with Julia.

x = [1,2,3]

import Statistics #getting access to its functions will require the prefix 'Statistics.’
Statistics.mean(x)

x = [1,2,3]

using Statistics #no need to add the prefix ‘Statistics.’ to call its functions
(although it's possible to do so)

mean(x)

BUILT-IN FUNCTIONS

Formally, Julia's built-in functions are contained in two packages known as |Core | and |Base | Both are

automatically loaded in every Julia session, with their functions accessible as if we had executed |using

Core|and[using Base| This determines that their functions don't require adding a prefix to be called.
2

Among mathematical functions, the syntax of their most common ones is the following.
Function in Julia Meaning
log(x) In ()
exp(x) e’
sqrt(x VT

abs(x) |z|

sin(x) sin(z)



Function in Julia Meaning
cos(x)
tan(z)

)
Operators as Functions

Most of the symbols employed as operators are also available as
functions. This is illustrated below for several arithmetic operators:

+(2,3) # same as 2 + 3
-(2,3) # same as 2 - 3
*(2,3) # same as 2 * 3
/(2,3) # same as 2 / 3
~(2,3) # same as 2 " 3

WHY USING "IMPORT" IF IT'S MORE VERBOSE?

When a function's name is shared across multiple packages, at least one of the packages must be

loaded via to prevent naming conflicts. For instance, given the package and
another one called containing a function called [mean], Julia will throw an error if you don't
load one of them with [import] 3

Using not only avoids naming conflicts, but may also reduce ambiguity in the meaning of a
function. For instance, consider a function called [rank] This name could reference a wide range of
concepts, depending on the context (e.g., the rank of a matrix, the order in a list). However, explicitly
identifying the package when the function is called could shed some light on its intended meaning.

4
Remark

may also be useful if you have custom functions that are widely
applied across your projects. For example, consider a function called
|[table_in_pdf| which exports Julia tables to a PDF with some
predefined format. While the name of the function makes it clear what
it's doing, a user could wonder if this function comes from a standard
package. You could hint that this isn't the case, by placing the function

in a package called [userDefined]. In this way, you can load the package

using |import UserDefined| and then «calling the function via

|UserDefined. table_in_pdf |



http://localhost:8000/PAGES/02c_scalars/#arithmetic_operators

APPROACHES TO LOADING PACKAGES AND CALLING FUNCTIONS

The concepts discussed so far will probably be all you need to use packages in Julia. However, there
are a few additional features worth mentioning.

First, users can load only a subset of functions from a package. This possibility is particularly relevant
for heavy packages, which may take a significant time to fully load. For instance, if we only need the

function from[Statistics] the following two approaches achieve the same resuilt.

x = [1,2,3]

import Statistics: mean
mean(x) # no prefix needed

x = [1,2,3]

using Statistics: mean

mean(x)

Note that this approach deems it unnecessary to add the package's name as a prefix, even when the

package is loaded via[import]

Another handy feature is the possibility of assigning custom names to either packages or functions.
This becomes particularly useful when names are lengthy.

x = [1,2,3]

import Statistics as st
st.mean(x)

x = [1,2,3]

import Statistics: mean as average
average(x) # no prefix needed

using Statistics: mean as average
average(x)

Again, notice that the function's name doesn't require any prefix when it's called, even with [import .

MACROS



Macros are ubiquitous in Julia. They enable the automation of tasks that otherwise would be tedious
and time-consuming to perform. On this website, we'll only cover how to apply macros, without
exploring how to define them. The reason is that creating macros requires knowledge of Julia's
metaprogramming capabilities, which is beyond the scope of this website.

While the utility of macros may not be immediately obvious at this point, this will become clearer once
we start applying them in subsequent sections.

APPLYING MACROS

Macros and functions share similarities, with both performing operations on inputs and producing
outputs. Their key distinction lies in their handling of inputs and outputs: macros manipulate code
syntax (statements or expressions), whereas functions process data values (variables or evaluated
expressions).

Formally, macros are denoted by prefixing the symbol to their name. They take an entire code
expression as their argument and transform it. For example, a macro might take |x =

some_function(y)| as input, potentially modifying each individual component (, E| or

|some_function(y) ), inserting new code, or reorganizing the code structure. The final output is a

modified version of the original expression, which is then integrated into the program during
execution.

A key purpose of macros is to automate code transformations. For example, consider the macro
in Julia, which appends a dot [ . | to every operator and function call in a statement. For now, ignore the
impact of adding dots to your code, which will be explained in an upcoming section. Instead, focus on
how macros operate at the syntactic level to rewrite entire code blocks.

# both are equivalent
z foo.(x .+ y)
@e. z foo(x + y) # @ adds . to '=', 'foo', and '+'

7

Warning!

Applying macros requires extreme caution, as they could act as black
boxes and hence lead to unexpected behaviors. In fact, macros tend to
be a common source of bugs. Make sure you understand which part of
the expression is modified by a macro and how.




FOOTNOTES

' The extent to which Julia advocates for this principle is evident in itself, where functions for
computing distributions are included in another package called [pistributions]

% Some built-in functions may require a prefix. For instance, this is what occurs with the function called [isgreater],
which must be called via |Base.isgreater | Furthermore, some submodules are also loaded by default in each
session. For instance, the function |Base.Iterators.accumulate |is part of the submodule|Iterators|from [Base],

and can be directly called using [Iterators.accumulate |

3- Defining a function that shares the name of another package's function isn't necessarily an oversight by

developers. For instance, we could implement our own [mean ] function in a package called [MyPackage], which aims
at computing averages more efficiently in certain applications.
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INTRODUCTION

Recall that functions can be classified into i) built-in functions, ij) third-party functions, and iii) user-
defined functions. The previous section has covered the first two, and we now focus on iii).

USER-DEFINED FUNCTIONS

The first step to define your own functions is giving names. Function names follow similar rules to
variable names. In particular, they accept Unicode characters, enabling the user to define functions
such as|3(x) | Once you create them, functions can be called without invoking any prefix. This means

that a function can be called by simply executing [foo(x)]. '

There are two approaches to defining functions. We'll refer to each as the standard form and the
compact form. The standard form is the most general and allows you to write both short and long
functions. On the other hand, the compact form is employed for single-line functions and is
reminiscent of mathematical definitions. To illustrate each form, consider a function that sums

two variables [x]and [y].

STANDARD FORM

function foo(x,y)
X +y

end

COMPACT FORM
foo(x,y) X +y

The output of the compact form is given by the only operation contained. For its part, the standard
form defaults to returning the last line as its output, allowing you to specify the output via the keyword
[return]. To return multiple outputs, you can use a collection, with tuples being the most common
choice. ?

These approaches to specifying an output are illustrated below.



EXPLICIT OUTPUT

function foo(x,y)
terml = x + vy

term2 = x * y

return term2

end
julia>
20

IMPLICIT OUTPUT

function foo(x,y)

terml = x + vy

term2 = x * y # output returned
end

jutia>

20

MULTIPLE OUTPUTS

function foo(x,y)
terml = x + vy
term2 = x * y

return terml, term2 # a tuple, using the notation that omits the parentheses
end

julia>
2-element Vector{Int64}:
12

20

AN EXPRESSION AS OUTPUT

function fool(x,y)
terml = x + vy
term2 = x * y

return terml + term2

end
julia>
32

)
Functions without Arguments

It's possible to define functions that don't require arguments, as we
show below.




FUNCTIONS WITHOUT ARGUMENTS

function foo()
a=1
b =1
return a + b
end

An example of functions without arguments is |Pkg.update() | which

was introduced when we studied packages.

The Order In Which Functions Are Defined is Irrelevant

A function can be defined anywhere in the code. In fact, you can define
a function that calls another function, even if the latter hasn't been
defined yet. To illustrate this, consider the following two code snippets,
which are functionally equivalent.

CODE SNIPPET 1
fool(x) = 2 + fo02(x)

foo2(x) =1 + x

julia>

5

CODE SNIPPET 2
foo2(x) =1 + x

fool(x) = 2 + foo02(x)

julia>

5

POSITIONAL AND KEYWORD ARGUMENTS

Up to this point, we've been defining and calling functions using the notation |foo(x,y)| A key
characteristic of this syntax is that arguments are passed in a specific order, so that assigns
the first argument to [x | and the second to [y]. This approach is known as positional arguments.

However, a major drawback of positional arguments is their susceptibility to silent errors: if we
accidentally swap the positions of the arguments, the function may still provide an output. As the
number of arguments grows, the likelihood of introducing such bugs increases, making it more



challenging to identify and resolve errors.

To circumvent this issue, we can rely on keyword arguments. This approach requires function calls to

explicitly specify their arguments, making their order irrelevant. For example, |foo(x=2,y=4)| and

| foo(y=4,x=2) |would then be valid and equivalent.

The following examples illustrate how to define and call functions using both positional and keyword
arguments. Additionally, we'll establish that the approaches can be combined. Note that positional
arguments necessarily require a semicolon during function definitions, but accept either a semicolon
or a comma during function calls.

POSITIONAL ARGUMENTS
foo(x, y) = x +vy

julia>

2

KEYWORD ARGUMENTS
foo(; x, y) =x +y

julia> [foo(x=1,y=1)|

2

julia> \foo(; x=1, y=1)\ # alternative notation (only for calling 'foo')
2

POSITIONAL AND KEYWORD ARGUMENTS COMBINED
foo(x; y) = x +y

julia> [foo(1 ; y=1)]|

2

julia> [foo(1 , y=1)| # alternative notation
2

KEYWORD ARGUMENTS WITH DEFAULT VALUES

Keyword arguments accept default values, allowing users to omit certain arguments when the

function is called. The following examples illustrate how this feature works in practice, where the
omitted arguments take on their default values.

GENERAL NOTATION
foo(x; y=1) = x +y

julia> # equivalent to foo(l,y=1)

2




OMITTING INPUTS
foo(; x=1, y=1) = x + vy

julia> # equivalent to foo(x=1,y=1)

2
julia> # equivalent to foo(x=2,y=1)
3

USING ARGUMENTS AS INPUTS OF OTHER ARGUMENTS

When a function is called, its arguments are evaluated sequentially from left to right. This property

enables users to define subsequent arguments in terms of previous ones. For example, given

[foo(;x,y)] the default value of [y ] could be set based on the value of [x].

PRIOR ARGUMENTS TO DEFINE DEFAULT VALUES
foo(; X, y=x+1) = x +y

julia> #function run with implicit value 'y=3'

5

SPLATTING
Given a function [foo(x,y)], you can set the values of [x] and [y] through a tuple or vector [z]. The

implementation relies on the splat operator [...] which unpacks the individual elements of a
collection and passes them as separate arguments.

TUPLE SPLATTING
foo(x,y) = x +vy

z = (2,3)
jutis>
5

VECTOR SPLATTING
foolx,y) = x + vy

z = [2,3]
julias
5

ANONYMOUS FUNCTIONS

Anonymous functions offer a third way to define functions. Unlike the previous methods, they're
commonly introduced with a different purpose: to serve as inputs to other functions. >



As the name suggests, anonymous functions aren't referenced by a name. Their syntax resembles the
arrow notation from mathematics (e.g. z — +/z). Specifically, single-argument functions are expressed

as|x -> <body of the function>| Likewise, functions with two or more arguments are expressed by

[(x,y) -> <body of the function>|

To demonstrate the role of anonymous functions, let's consider the built-in function [map(<function>,
<collection>)] This applies element-wise to each element of [<collection>] For
example, [map(add_two, x)] applies the function [add_two(a) = a + 2] to each element of [x =
[1,2,31], thus returning [[3,4,51]. Applying in this way requires defining beforehand,
which unnecessarily pollutes the namespace if won't be reused. Anonymous functions
provide an elegant solution, by directly embedding the operation within . In this way, an
anonymous function effectively eliminates the need of creating a temporary function like .

WITHOUT AN ANONYMOUS FUNCTION

X = [1, 2, 3]
add_two(a) = a + 2

result = map(add_two, x)

jutia>

3-element Vector{Int64}:
3
4
5

THROUGH AN ANONYMOUS FUNCTION
X = [1, 2, 3]

result = mapla —> a + 2, x)

julia>
3-element Vector{Int64}:
3

4

5

The function can also demonstrate the syntax of anonymous functions with multiple arguments.
In those cases, the syntax becomes [map(<function>, <arrayl>, <array2>)| For instance, [map(+,

[1,2], [2,4])]provides the sum of each pair of numbers, yielding[[3, 61].




WITH COMPACT FUNCTION

X = [1,2,3]
= [4,5,6]

add(a,b) = a + b
result = map(add_two, x, y)
julia>
3-element Vector{Int64}:

3

4

5

WITH ANONYMOUS FUNCTION

X = [1,2,3]
y = [4,5,6]
result = map((a,b) -> a + b, x, y)
julia>
3-element Vector{Int64}:
5
7
9

THE "DO-BLOCK" SYNTAX

Anonymous functions can help keep our code tidy, but they may not be practical for functions that
span multiple lines. This inconvenience can be addressed by what's known as do-blocks. They allow
us to insert the anonymous function separately, and then pass it as the first argument to a function

call. Given a function | foo(<inner function>, <vector>) | its genericimplementation is as follows.

PRIOR ARGUMENTS TO DEFINE DEFAULT VALUES

foo(<vector>) do <arguments of inner function>
# body of inner function
end

To illustrate the notation with a concrete scenario, let's revisit the function example and rewrite it
using a do-block.



WITH COMPACT FUNCTION

X = [1, 2, 3]
add_two(a) = a + 2
result = map(add_two, x)
julia>
3-element Vector{Int64}:

3

4

5

WITH ANONYMOUS FUNCTION

X = [1, 2, 3]

result map(a => a + 2, x)

julia>
3-element Vector{Int64}:
3

4

5

WITH DO-BLOCK SYNTAX

X = [1, 2, 3]

result map(x) do a
a+ 2

end

julia>
3-element Vector{Int64}:
3

4

5

Do-blocks also accept anonymous functions with multiple arguments, as shown below.

WITH COMPACT FUNCTION

x = [1,2,3]
y = [4,5,6]

add(a,b) = a + b
result = map(add_two, x, y)

jutia>
3-element Vector{Int64}:
5
7
9




WITH ANONYMOUS FUNCTION

[1,2,3]
[4,5,6]

X

result = map((a,b) -> a + b, x, y)
julia>

3-element Vector{Int64}:

5

7

9

WITH DO-BLOCK SYNTAX

X = [1,2,3]
= [4,5,6]
result = map(x,y) do a,b # not (a,b)
a+hb
end
julia>
3-element Vector{Int64}:
5
7
9

A FUNCTION'S DOCUMENTATION (OPTIONAL)

To conclude this section, we cover how to document functions. This can be done by adding a string
expression immediately before the function definition. Once this is done, the documentation can be
accessed in the same manner as with built-in functions: you can type the function's name in the REPL
after pressing , or directly hover over the function's name in VS Code. *

STANDARD FORM

"This function is written in a standard way. It takes a number and adds two to it."
function add_two(a)

a+ 2
end

COMPACT FORM

"This function is written in a compact form. It takes a number and adds three to it."
add_three(a) = a + 3

For further details, see the official documentation.



FOOTNOTES

- The method to call a function actually depends on the module in which it's defined, and whether this module has
been "imported" or "used". We won't cover modules on this website. However, they're essential when working for
large projects, as each module operates as an independent workspace with its own variables. When initiating a new
session in Julia, you're actually working within a module called .

2:The reason for this is that tuples are more performant than vectors when the number of elements is small.
3- Anonymous functions are also known as lambda functions in other languages.

4 Here, we explained how to access a function's documentation, under the subtitle "To See The Documentation of a
Function".



3d. Variable Scope & Relevance of Functions

Martin Alfaro

PhD in Economics

INTRODUCTION

Variable scope refers to the code block in which a variable is accessible. The concept allows us to
distinguish between global variables, which are accessible in any part of the code, and local
variables, which are confined to specific blocks like functions or loops. The existence of scopes
determines that the same variable | x| could refer to different objects, depending on where it's called.

When it comes to functions, Julia adheres to specific rules for variable scope. Specifically, given a
variable | x| defined outside a function:

« if a new variable [x]is defined inside a function or is passed to a function as an argument, then [x
is considered local to that function. This means that any reference to | x | within the function refers
to the local variable, without any relation to the variable | x | defined outside the function,

e if a function doesn't define a new | x| nor | x| is a function argument, then | x | refers to the variable
defined outside the function (i.e., the global variable).

In this section, we'll show how these rules work in practice.

GLOBAL AND LOCAL VARIABLES

A variable that is local to a function exists solely within that function's scope. This means that these
variables cease to exist once the function finishes executing. Consequently, any attempt to reference
local variables outside the function will result in an error.

Variables local to a function encompass:

1. the function arguments,

2. the variables defined in the function body.

Any other variable included in a function that's not i) or ii) necessarily refers to a global variable.

Understanding which variables are local or global is essential for predicting a program’s behavior. This
is because a local variable may share the same name as a global one, without them being related. The
following examples help clarify the differences between global and local variables.


https://alfaromartino.github.io/

x = "hello"

function foo(x)
y =x + 2

return x,y
end

# 'x' is local, unrelated to 'x = hello' above

# 'y' is local, 'x' refers to the function argument

jutie>
1
3

julia>

"hello"

julia>

ERROR: UndefVarError:

# local x
# local y

y not defined

function foo(x)
y = X + z
global

return x,y,z

# 'x' refers to the function argument, 'z' refers to the

end

julia>

1 # local x
3 # local y
2 # global z
julia>

ERROR: UndefVarError: x not defined
julia>

2

THE ROLE OF FUNCTIONS

In programming, functions can be understood as self-contained mini-programs to represent

specific tasks. Under this interpretation, local variables simply act as labels that help articulate the

mechanics of the task. Consequently, their inaccessibility outside the function emerges naturally.

To explain this view of functions, consider a variable [x], along with another variable [y] computed by

transforming [x] through a function [f]. In particular, assume a transformation that doubles [x] so that

[y = 2 * x] The following are two approaches to calculating[y].

Xx =3
double() = 2 * x
y = double()




double(x) = 2 * x
y double(x)

double(gJ) = 2 * §f
y double(x)

The function in Approach 1 relies on the global variable [x]. This practice is highly discouraged for
several reasons. Firstly, it prevents the reusability of the function, as it's specifically designed to double

the global variable [x], rather than acting as a mini-program that doubles any variable.

Second, the inclusion of the global variable | x| compromises the function's self-containment, as the
function's output depends on the value of at the moment of execution. If you work on a long
project, this will turn the code prone to bugs.

Lastly, global variables have a detrimental impact on performance, a topic we'll study later on the
website. In fact, global variables in Julia are directly a performance killer.

In contrast, Approach 2 refers to [x|as a local variable. This | x | is unrelated to the global variable | x |—it
simply serves as a label to identify the variable to be doubled. Indeed, we could've replaced | x | with
any other label, as demonstrated in Approach 3 through the monkey emoji, | &

By avoiding referencing any variable outside its scope, Approach 2 makes the function self-contained.
This allows users to easily anticipate the consequence of executing through a simply
inspection of the function, eliminating the need to review the entire codebase. Thus, Approach 2 aligns
with the interpretation of a function as a self-contained mini-program: the function embodies the task
of doubling a variable, turning the function reusable and applicable to any variable. In this context,

applying[double]to the global variable [x] becomes just one possible application.

RECOMMENDATIONS FOR THE USE OF FUNCTIONS

Structuring code around functions offers numerous advantages. However, to fully realize these
benefits, users must adhere to certain principles when writing code. This section outlines a few of
them and should be considered as a mere introduction to the subject. The topic will be investigated
further, when we explore high performance.

AVOID GLOBAL VARIABLES IN FUNCTIONS

Global variables are strongly discouraged. This is not only due to the reasons mentioned previously,

but also because they can have a devastating impact on performance. The easiest solution to this
issue is to pass global variables as function arguments. This practice will actually become second
nature once you start viewing functions as self-contained mini-programs. Specifically, by adopting this



perspective, you'll conceive local variables as labels to describe a task, rather than references to global
variables. This shift in mindset can help you write more efficient and maintainable code.

AVOID REDEFINING VARIABLES WITHIN FUNCTIONS

The suggestion applies to both local variables and function arguments. Redefining these variables can

have several disadvantages, including reduced code readability and potential performance
degradation. Therefore, it's recommended that you define new variables instead of redefining existing
ones. This approach is demonstrated in the following example.

function foo(x)

X 2 + X # redefines the argument

y

y X +y # redefines a local variable
end

function foo(x)

z 2 + x # new variable
y X
output z+y # new variable
end
MODULARITY

We've emphasized the importance of viewing functions as self-contained mini-programs, designed to
perform specific tasks. This perspective leads us to highlight the importance of modularity: the
practice of breaking down a program into multiple small functions, each with its own distinct purpose,

inputs, and outputs.

The primary benefit of modularity is the ability to work with independent code blocks. By keeping
these blocks separate, we can decompose complex problems into multiple manageable tasks, making
it easier to test and debug code. Additionally, modularity makes it possible to eventually improve or
substitute parts of the code, without breaking the entire program.

A helpful way to understand this principle is by considering the analogy of building a Lego minifigure.
In the first step, multiple blocks are created independently, each representing a specific part of the
figure, such as the legs, torso, arms, and head. Then, in the second stage, these individual blocks are
brought together and assembled into an integrated minifigure.

This two-step approach offers several advantages. By focusing on each block individually, we can
concentrate and refine each part without worrying about the entire structure. Additionally, it provides
great flexibility: since each block is created independently, we can modify specific blocks without
having to rebuild the entire figure. For instance, if we want to change the figure's head, we can simply

swap out the corresponding block, without starting from scratch.



The principle of modularity is closely tied to the suggestion of writing short functions. Some
proponents even argue that functions should be limited to fewer than five lines of code Indeed, entire
books have been written based on this principle. Although this viewpoint may be considered rather
extreme, it clearly emphasizes the advantages of avoiding lengthy functions.

FOOTNOTES

' Local variables play a similar role to integration variables in math. Formally, in [ 1 (¢) dt for some function f, ¢ just

represents a symbol indicating over which variable we're integrating. The integral could be equivalently expressed
using any other integration variable, such as z in [ f (z) dz.


https://dev.to/kanani_nirav/the-five-lines-of-code-principle-why-less-is-more-in-programming-31j6#:~:text=The%20idea%20is%20that%20a,and%20modify%20than%20longer%20functions.
https://www.manning.com/books/five-lines-of-code

3e. Map and Broadcasting

Martin Alfaro

PhD in Economics

INTRODUCTION

This section explores element-wise operations on iterable collections. These are defined as
collections whose elements can be accessed sequentially, including examples like vectors, tuples, and
ranges.

The first approach covered is the function, which applies a given function to each element of a
collection. This function is particularly convenient for transforming collections while avoiding for-loops.

After this, we'll shift our focus to a fundamental technique in Julia known as broadcasting. This
enables the application of functions and operators element-wise, while maintaining concise and
expressive code. Broadcasting is quite versatile, supporting operations on collections of equal size or
combinations of scalars and same-size collections. Its distinctive syntax, which involves appending a
dot [ . ] to the function/operator, makes it easily identifiable throughout the code.

Remark

The terms broadcasting and vectorization will be used
interchangeably throughout the website, although strictly speaking
T Furthermore, vectorization has multiple
meanings, depending on the context in which the definition is applied.

they're not equivalent.

Warning!

Later on the website, we'll explore for-loops as an alternative approach
to transforming arrays. Several languages strongly recommend
vectorizing operations to improve speed, instead highly discouraging
for-loops. Such advice does not apply to Julia. In fact, when it comes
to optimizing code in Julia, for-loops are often the key to achieving
faster performance.

Considering this, the main advantage of vectorization in Julia is to
streamline code without sacrificing speed.

THE "MAP" FUNCTION



https://alfaromartino.github.io/

The function is available in most programming languages, allowing you to take a collection and
generate a new one with transformed elements. It can be applied in two ways, depending on the
number of inputs passed.

In its simplest form, takes a single-argument function and a collection [x]. Its syntax is
map(foo, x) ], returning a new collection with [foo(x[i])] as i-th element. is commonly applied

with an anonymous function playing the role of [ foo], as illustrated below.

x = [1, 2, 3]

z = map(log, x)

julia>
3-element Vector{Float64}:
0.0

0.69315

1.09861

julia> [[log(x[1]), log(x[2]), log(x[31)1]
3-element Vector{Float64}:

0.0

0.69315

1.09861

x
|

= [1, 2, 3]

z = mapla —> 2 * a, x)

julia>

3-element Vector{Int64}:

2

4

6

julia> [[2*x[1], 2*x[2], 2*x[3]]]
3-element Vector{Int64}:

2

4

6

The second way to apply arises when the function [foo | takes multiple arguments. In case is
a two-argument function, the syntax is [map(foo, x, y)| returning a new collection whose i-th
element is [foo(x[1], y[i])] When the collections [x] and [y] have different sizes, is applied
element-wise until the shortest collection is exhausted. This rule applies even when either | x| or
is a scalar, in which case would return a single element.

For demonstrating its use, let's consider the addition operation. As you may recall, | + |denotes both an

operator (e.g., [2 + 3] and a function (e.g., [+(2, 3)]). By using[+]in particular as a function, can

perform element-wise additions across multiple collections.



=[1, 2, 3]
[-1,-2,-3]

< X
|

z = map(+, x, vy) # recall that '+’ exists as both operator and function

julia>

3-element Vector{Int64}:
0

0

0

julia> [ [+(x[1],y[1]), +(x[2],y[2]), +(x[3],y[31)]]
3-element Vector{Int64}:

0
0
0
=[1, 2, 3]
= [-1,-2,-3]
z = map(Ca,b) -> a+b, x, y)
julia>
3-element Vector{Int64}:
0
0
0

julia> [ [x[1]1+y[1], x[2]+y[2], x[3]1+y[3]]]
3-element Vector{Int64}:

0

0

0

[ 1, 2, 3]
y = [-1,-2]

x
1

map(+, x, y) # recall that '+' is both an operator and a function

z

julia>

2-element Vector{Int64}:
0

0

julia> | [+(x[1],y[1]), +(x[2],y[2])]]
2-element Vector{Int64}:

0

0




X [ 1, 2, 3]
y -1

z = map(+, x, y) # recall that '+' is both an operator and a function

julia>
1-element Vector{Int64}:
0

julia> [[+(x[1],y[1])]]
1-element Vector{Int64}:
0

BROADCASTING

The function can rapidly become unwieldy when dealing with complex functions or multiple
arguments. This is where broadcasting comes into play, offering a more streamlined syntax.

Next, we'll explore the concept of broadcasting in a step-by-step manner. First, we'll show how it
applies to collections of equal size, covering both functions and operators. After this, we'll
demonstrate that broadcasting accepts combinations of scalars and collections, even though it
typically doesn't support operations with collections of different sizes. In such instances, the scalar is
treated as a vector that matches the size of the corresponding collections.

Unlike other programming languages, broadcasting is an intrinsic feature of Julia and thereby
applicable to any function or operator, including user-defined ones.

BROADCASTING FUNCTIONS

Broadcasting expands the versatility of functions, allowing them to be applied element-wise to a
collection. This feature is implemented by appending a dot after the name of the function, as in | foo.
(x)|.

Remarkably, any function has a broadcasting counterpart [foo.]| This entails that
broadcasting is automatically available for user-defined functions. Furthermore, it determines that
broadcasting isn't restricted to numeric collections, but to any type of collection.

Similarly to [map], broadcasting can be applied to both single- and multiple-argument functions. Each
case warrants separate consideration.

As for single-argument functions, broadcasting over a collection | x| returns a new collection with
foo(x[1]) |as its i-th element. The following examples demonstrate this.



# 'log(a)’ is a function appying to scalars ‘a’
X = [1,2,3]

julia>
3-element Vector{Float64}:
0.0

0.69315

1.09861

julia> [[log(x[1]), log(x[2]), log(x[3])]| # identical to
3-element Vector{Float64}:

0.0

0.69315

1.09861
square(a) = a"2 #user-defined function for a single element 'a’
X = [1,2,3]

julia>
3-element Vector{Int64}:
1

4

9

julia> [[square(x[1]), square(x[2]), square(x[3])]] # identical to
3-element Vector{Int64}:

1

4

9

As for multiple-argument functions, suppose a function and collections [x] and [y]. Then, [foo.
(x,y) |returns a new collection with [ foo(x[i],y[i]) |as its i-th element.

Importantly, collections with different sizes aren't allowed, establishing a clear contrast between
broadcasting and [map]. The sole exception to this rule is when one of the objects is a scalar, as we'll
see later.

Below, we provide several examples. The first example in particular makes use of the built-in function
which provides the maximum value among its scalar arguments.



# 'max(a,b)' returns 'a' if 'a>b', and 'b' otherwise

[0, 4, 0]
[2, o, 8]

julia>
3-element Vector{Float64}:
2
4
8

julia> [[max(x[1],y[1]), max(x[2]),y[2]), max(x[31),y[3])]1] # identical to
3-element Vector{Float64}:

2
4
8
foo(a,b) =a +b # user-defined function for single elements 'a' and 'b'
= [-2, -4, -10]
=[2, 4, 10]
julia>
3-element Vector{Int64}:
0
0
0

julia> [[Foo(x[1],y[1]), foo(x[2]),y[2]), foo(x[31),y[3])1] # identical to
3-element Vector{Float64}:

0

0

0

Remark

Broadcasting applies not only to numeric functions, but to any function.
For instance, consider the built-in function [string], which concatenates
its arguments to form a sentence (e.g., [string("hello ", "world") |
returns|"hello world"|).

country = ["France", "Canada"]
is_in = [" dis in " , " is in "]
region = ["Europe", "North America"]

julia> |string.(country, is_in, region)|
2-element Vector{String}:

"France is in Europe"

"Canada is in North America"




BROADCASTING OPERATORS

It's also possible to broadcast operators, making them apply element-wise. Its use requires

prepending a dot before the operator.

For its application, it's helpful to recall the classification of operators by the number of operands, as
this determines their syntax. Specifically, the syntax of unary operators is [<symbol>x], so that [.vx
broadcasts[V]. Likewise, the syntax for binary operators is[x <symbol> y| such that computes
the element-wise sum of vectors [x]and [y] resulting in [ [x[1]+y[1], x[2]+y[2], ...1]

2, 3]
-2, -3]

X =
y:

julia>
3-element Vector{Int64}:
0

0

0

[ 1,
[-1

x = [1, 2, 3]

julia>

3-element Vector{Float64}:
1.0
1.41421
1.73205

BROADCASTING OPERATORS WITH SINGLE-ELEMENT OBJECTS

In all the cases covered so far, broadcasting was applied with inputs of the same size. In general,

collections of dissimilar size, such as|[x = [1,2]]|and|y=[3,4,5]] aren't allowed.

One exception to this rule occurs when broadcasting applies to vectors of equal size combined with
scalars. In these cases, scalars are treated as objects having the same size as the vectors, with all

entries equal to the scalar. For example, given and [y = 2] the expression [x .+ y
produces the same result as defining and then executing[x .+ y| This is demonstrated

below.

[0,10,20]
y =5

julia>
3-element Vector{Int64}:
5

15

25




[0,10,20]
[5, 5, 5]

< X
1

jutias

5
15
25

3-element Vector{Int64}:

Re

col

mark

We emphasize that broadcasting can be applied to any iterable

lection. Thus, the example based on strings presented above can be

rewritten as follows.

[v Code]

country = ["France", "Canada"]
is_in = " is in "
region = ["Europe", "North America"]

So far, our examp

julia> \String.(country, is_in, region)\
2-element Vector{String}:

'France is in Europe"
'Canada is in North America"

ITERABLE OBJECTS

les have focused on broadcasting using vectors as collections. Furthermore, we've

explored the technique by treating functions and operators separately, which sheds light on the
underlying mechanics of broadcasting. Next, we'll take a more comprehensive perspective, applying
broadcasting to other types of collections and to expressions combining functions and operators.

We first show that

broadcasting can be applied to any iterable object, including tuples and ranges.

x = (1, 2, 3)

# or simply x =1, 2, 3

jutia>

(0.0, 0.69315,

jutia>

(2, 4, 6)

1.09861)




x = 1:3

jutias

(0.0, 0.69315, 1.09861)

julia>

(2, 4, 6)

= (1, 2, 3) # or simply x =1, 2, 3
=1:3

< X
|

jutia>

(2, 4, 6)

Furthermore, it's possible to simultaneously broadcast operators and functions. Given the
pervasiveness of such operations, Julia provides the macro for an effortless application. The
macro should be added at the beginning of the statement, and has the effect of automatically adding

a "dot" to each operator and function found.

To demonstrate its use, consider adding two vectors element-wise, which we then transform by

squaring the elements of the resulting vector.

[1, o, 2]
[1, 2, 0]

X
y

square(x) = x"2

julia> [square.(x .+ y)]|
3-element Vector{Int64}:

4
4
4
x = [1, 0, 2]
y = [1, 2, 0]

square(x) = x"2

julia> [@. square(x + y)]
3-element Vector{Int64}:
4
4
4
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[1, 0, 2]
[1, 2, 0]

< X
1

temp = x .+ y
z = temp ." 2

julia>

3-element Vector{Int64}:
2

2

2

julia>

3-element Vector{Int64}:
4

4

4

BROADCASTING FUNCTIONS VS BROADCASTING OPERATORS

We've demonstrated that both functions and operators can be broadcasted. This lets us implement
operations in two distinct ways: either broadcast a function that operates on a single element or
define a function that directly performs the broadcasted operation.

The examples below demonstrate that the same output is obtained using either approach. For the
illustration, we suppose that the goal is to square each element of.

x
1

[1, 2, 3]

number_squared(a) = a * 2 # function for a single element 'a’

julia> [number_squared. (x) |
3-element Vector{Int64}:

1

4

9

X = [1, 2, 3]
vector_squared(x) = x ." 2 # function for a vector 'x'
julia> [vector_squared(x)| # '.' not needed (it'd be redundant)
3-element Vector{Int64}:

1

4

9

While both approaches yield the same output, defining a function that operates on a scalar is the

more advisable choice. This is due to a couple of reasons. Firstly, a function like | number_squared(a)

enables users to seamlessly perform computations on both scalars and collections. This is achieved by



simply choosing between executing the function or its broadcasted version. A corollary of this is that

scalar functions avoid committing to a specific application. Secondly, the notation [number_square. (x)

explicitly conveys that the operation is element-wise, an aspect that would remain hidden in

|vector_squared(x) |.

BROADCASTING OVER ONE ARGUMENT ONLY

When we broadcast a function or operator over some vectors and , both objects are
simultaneously iterated. However, there are instances where we only want to iterate over one
argument, keeping the other argument fixed. A typical scenario is when we need to check whether
elements from [x] match any values in a predefined list[y ]

To illustrate how this can be achieved via broadcasting, we first introduce the function [in(a, list)]|
This assesses whether the scalar [a] equals some element in the vector [list] For instance, executing

[in(2, [1,2,3])]returns because[2]belongs to[[1,2,3]]

Suppose now that, instead of a scalar |E| we have a vector . The goal then is to verify whether each

of the elements in is present in [list = [1,2,3]] Below, we show that this operation can't be
directly implemented by broadcasting[in]

X = [1, 2]
list = [1, 2, 3]

julia> ’in.(x, list)‘

ERROR: DimensionMismatch: arrays could not be broadcast to a common size; got a dimension
with lengths 2 and 3

x =[1, 2, 4]
list = [1, 2, 3]

julia> [in.(x, list)]
3-element BitVector:
1

1

0

In the first example, [in.(x, list)]errors because[x]and should either have the same size or
one of them be a scalar. The second example does produce an output, but not the one we're looking
for: it checks whether [1==1] [2==2], and [4==3]. Instead, our goal is to determine if[1]is in[[1,2,3]], if
s in[[2,2,37) and if[3]is in [[2,2,3]].

Intuitively, we need a mechanism to inform Julia that should be treated as a single element

while iterating over [x]. This can be accomplished in two different ways: either by enclosing ina
collection (e.g., a vector or tuple) or by using the function.




As for the first approach, let's consider a tuple as the wrapping collection. Then, the implementation
would be by writing [ (1ist, )], which converts the variable into a tuple whose only element is the tuple
itself. 2 While explaining the specifics of [Ref |is beyond our current scope, Nonetheless, what matters

for practical purposes is that [Ref(list)] makes be treated as a singe element. Below, we

demonstrate each approach.

X = [2, 4, 6]
list = [1, 2, 3] # 'x[1]' equals the element 2 in 'list'

julia> [in.(x, [list])]

3-element BitVector:

1

0

0

X = [2, 4, 6]

list = [1, 2, 3] # 'x[1]' equals the element 2 in 'list'

julia> [in.(x, (list,))]

3-element BitVector:

1
0
0
X = [2, 4, 6]
list = [1, 2, 3] # 'x[1]' equals the element 2 in 'list'

julia> [in.(x, Ref(list))]

3-element BitVector:
1

0

0

The output vector we obtain in each case is what's known as a |BitVector |, where | 1| corresponds to

and [o] to [false] Therefore, the result is [[true, false, false]], reflecting that is [2
and[2]belongs to [list], whereas[x[2]]and [x[3]]don't equal any element in[ list |

(

Warning!

It's possible to use any collection to wrap [list] However, we'll see in
Part Il of the book that there's some performance penalty involved
when vectors are created. Consequently, you should stick to | (list, )
rather than|[list] |when implementing this approach.

While the previous example focused on the broadcasting of functions, the same principle applies to
operators. This can be illustrated through the [€] operator, which serves a similar purpose to the [in
function. Just like [in], the operator determines whether a particular element exists within a
collection. 3



X = [2, 4, 6]
list = [1, 2, 3]

julia> \x .€ (list,)\ # only 'x[1]' equals an element in 'list’
3-element BitVector:

1
0
0
X = [2, 4, 6]
list = [1, 2, 3]

julia> \x .€ Ref(list)\ # only 'x[1]' equals an element in 'list'
3-element BitVector:

1

0

0

CURRYING AND FIXING ARGUMENTS (OPTIONAL)

Currying is a technique that transforms the evaluation of a function with multiple arguments into
evaluating a sequence of functions, each with a single argument. 4 For instance, the curried version of

would be written | f(x) (y) | and provide an identical output.

Our interest in currying lies in its ability to simplify broadcasting: it enables the treatment of an
argument as a single object, without the need to use or encapsulate objects as vectors/tuples.
The technique could seem confusing for new users. In particular, it requires a good understanding of
functions as first-class objects, entailing that functions can be treated as variables themselves. My
primary goal is that you can at least recognize the syntax of currying, and thus be able to read code
that applies the technique.

We start by illustrating how currying can be applied in general.

addition(x,y) = 2 * x + vy

julia> [addition(2,1)|
5

addition(x,y) = 2 * x + vy

# the following are equivalent
curried(x) = (y -> addition(x,y))
curried = x —=> (y —> addition(x,y))

julia> [curried(2)(1) ]|
5




addition(x,y)
curried(x)

# the following
.F

=2 %X +y

(y —> addition(x,y))

are equivalent
curried(2)

# function of 'y', with 'x' fixed to 2

gCy) addition(2,y)

julia>

5

julia>

5

The key to understanding the syntax is that is a function itself, with |y | as its argument.
The second tab illustrates this clearly through the equivalence between |f

|addition(2,y) | These functions help us understand the logic behind curry, but are only useful for the

specific case of [x=2] Instead, allows the user to call the function through [curried(x)
(v)] and so be used for any[x]

As for broadcasting, any function in Julia can be broadcasted through [f. |. And we've determined

that is a function just like any other. Therefore, plays the same role as
and so we can broadcast over |y |for a fixed | x| through |curried(x). (y) |

curried(2)| and

a =2
b = [1,2,3]
addition(x,y) = 2 * x + vy

curried(x) = (y -> addition(x,y)) # ’'curried(x)' is a function, and 'y' its argument

julia> [curried(a).(b)]
3-element Vector{Int64}:
5

6

7




a =2
[1,2,3]

(op
1

addition(x,y) = 2 * x + vy
curried(x) (y => addition(x,y))

#the following are equivalent
f = curried(a) # 'fool' is a function, and 'y' its argument
g(y) = addition(2,y)

julia>

3-element Vector{Int64}:
5

6

7

julia>

3-element Vector{Int64}:
5

6

7

Let's now explore how the currying technique can help treat a vector as a single element in
broadcasting. To illustrate this, consider the function used previously. This function has a built-in
curried version, which can be applied through [in(1list).(x)| for vectors and [x]. To better
demonstrate its usage, the following example compares an implementation with [Ref], the built-in

curried and our own curry implementation.

X
list

[2, 4, 6]
[1, 2, 3]

julia> [in.(x,Ref(list))]
3-element BitVector:

1
0
0
x = [2, 4, 6]
list = [1, 2, 3]
our_in(list_elements) = (x -> in(x,list_elements)) # ‘'our_in(list_elements)' 1is a
function

julia> |ourfin(list).(x)| # it broadcasts only over 'x!'
3-element BitVector:

1

0

0




[2, 4, 6]
[1, 2, 3]

X
list

julia> [in(list).(x)| # similar to ‘our_in'
3-element BitVector:
1

0
0

FOOTNOTES

1 Vectorization refers to applications restricted to arrays of the same size, with broadcasting being an extension of it
that allows for scalars.

2 Recall that tuples with a single element must be written with a trailing comma, as in[(list, ) | The expression
instead would be interpreted as [ list], and hence treated as a vector.

3 [€] can also be applied as a function, with its syntax mirroring that of [in]. Thus, [€(a, list)|for a scalar [a]yields
the same results as|[in(a, list)|.

4 The name comes from the mathematician Haskell Curry, not the spicel!



4a. Overview and Goals

Martin Alfaro

PhD in Economics

After studying functions, Chapter 4 covers another two core tools for programming: conditions and
for-loops.

At this point, we'll simply define the concepts, without emphasizing much on the most effective ways
to apply them. Basically, you should focus on the approaches and syntax to express conditions and
for-loops.

We also relegate the analysis of techniques that combine functions, conditions, and for-loops. The
following chapters will show that their simultaneous use gives rise to important concepts of Julia's
language, such as in-place functions.
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4b. Conditions

Martin Alfaro

PhD in Economics

INTRODUCTION

This section lays the basics for incorporating conditions into our programs. Formally, conditions are
defined as functions and operators that return true or false as their output. A common example of a

condition is[x > y].

To get the most out of this section, you should keep in mind the classification of operators discussed
here. This establishes that operators can be categorized according to their number of operands.

Specifically, unary operators act on a single operand and precede it (i.e. [<operator>x]), whereas
binary operators take two operands and are placed between them (i.e.|x <operator> y]|).

CONDITIONS

Conditions are represented as values with type [Bool], evaluating to either [true] or [false] These

values are internally represented as integers restricted to[1]and[e].

The representation of Boolean values in the REPL varies depending on their dimension: scalar |Bool
values are displayed as [true]and[false], while vectors use[1]and[0] This is illustrated below.

#'y' provides ‘true’ or ‘false' as its output
y = (x >0)

julia>

true

#'z' provides 'true' and 'false' as its output, represented by 1s and 0s
z=[x>0, x <0]

julia>
2-element Vector{Bool}:
1

0

Warning!
Parentheses are optional when writing single conditions, allowing us to

write rather than [y = (x > 0)] Nonetheless, the former
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syntax is somewhat ambiguous, with the risk of being potentially

misinterpreted as | (y = x) > 0| To avoid confusion, it's a good practice

to always include parentheses. This is especially true when working with
multiple conditions, where outcomes can be drastically altered.

The condition in the previous example was defined via the operator [>]. More generally, conditions

accept comparison operators, which are binary operators that compare values of various types (e.g.,

numbers and strings). The next list defines the most common ones.

(

(

Comparison Operator Meaning

equal

[x # ylor|x !=y| not equal

X <y lower than

X < ylor|x <= y]| lower or equal than
X >y greater than

[x = y|lor{x >= y| greater or equal than

Remark

The non-standard characters appearing in the table can be written
using tab completion:

o [#]via which stands for "not equal”,
e [>]via which stands for "greater or equal",
e [<]via which stands for "lower or equal".

Remark

Comparison operators are also available as functions. For instance, the
following expressions are all valid:

==(1,2) # same as 1 ==
#(1,2) # same as 1 # 2
>(1,2) # same as 1 = 2
>=(1,2) # same as 1 = 2
>(1,2) # same as 1 > 2




LOGICAL OPERATORS

Logical operators allow us to combine multiple conditions into a single one. Formally, they take |Bool
expressions as their operands, and return another as their output. The following are the main
logical operators used in Julia.

Logical Operator Meaning

(] and 7]
or
negation of x|

Notice that[&&]and [ ]follow the syntax rules of binary operators.

# are both variables positive?
zl1 = (x > 0) & (y > 0)

# is either 'x' or 'y’ (or both) positive?
z2 = (x>0 || (y>0)

julia>

true

julia>

true

Another operator taking conditions as their operands is the "not" operator, represented by |I| This is

a unary operator that inverts a condition's value, changing | true|to |false| and vice versa. To use it,

you simply place [ 1] at the start of the condition (i.e., before the parentheses).

As an illustration, the variables[y1]and[y2]below become equivalent via[! .

# is 'x' positive?
yl = (x > 0)

# is 'x' not less than zero nor equal to zero? (equivalent)
y2 = I(x s 0)

julia> #identical output as 'y2'
true

LOGICAL OPERATORS AS SHORT-CIRCUIT OPERATORS




A key feature of and [[1] is that they're short-circuit operators. This means that, once an
operand is evaluated, the remaining operands are evaluated only if the previous operands didn't
establish the truth or falseness of the expression. Specifically:
e [((x>0) || (y>0)]
This expression is true when at least one condition is satisfied. Thus, Julia begins by analyzing
[x > o] If this expression is true, it immediately returns [true], without evaluating any
subsequent expression. Only when is false will Julia evaluate[y > o]

e [(x>0) && (y >0)]
This expression is true if both conditions are satisfied. Thus, Julia begins by analyzing [x > @],
If this expression is false, it immediately returns [false] without evaluating any subsequent

expression. Only when is true will Julia evaluate[y > o]

Since not all operands are always evaluated, it's possible to get a result even if some operands contain
invalid expressions. This is shown in the next example, where we include invalid Julia code as a
condition.

x = 10

julia> ](x < 0) && (this—is—not—even—legitimate—code)\

false

julia> ](x > 0) && (this-is-not-even—legitimate-code)\
ERROR: UndefVarError: “this® not defined

x =10

julia> ](x > 0) || (this—is—not—even—legitimate—code)‘
true

julia> ](x <0) || (this—is—not—even—legitimate—code)\

ERROR: UndefVarError: “this® not defined

PARENTHESIS IN MULTIPLE CONDITIONS

The inclusion of parentheses isn't crucial when working with only two conditions. This is because

expressions like| (x > 0) & (y > 0)|can be safely written as|x > 0 & y > 0], without much risk of

confusion.

On the contrary, when dealing with three or more conditions, the lack of parentheses can drastically
impact the expected behavior of an expression. The following example illustrates this point.

X =5
y =20

julia> [x <0 && y >4 || y < 2

true




X =5
y==9

julia> ](x <0)&& (y >4 || vy < 2)‘
false

X =5
y=290

julia> [(x <0 && y > 4) || (y < 2)]
true

In the example, the expression without parenthesis is equivalent to the last tab's, since has
higher precedence than[[|]in Julia: when both [&&]and [ ][] are used, [&&]will be evaluated first.

To avoid confusion when more than two conditions are incorporated, we'll always add parentheses.
This improves readability and spares us the need to memorize specific rules. The next optional
subsection covers Julia's precedence rules in more detail. However, if you'll consistently enclose
conditions in parentheses, you can safely skip it.

MULTIPLE CONDITIONS WITHOUT PARENTHESES (OPTIONAL)

To simplify the explanation, let's focus on cases with three conditions. These conditions will be
represented through variables [a] [b], and [c] with each variable possibly representing

expressions like [x > 0]

To understand how Julia groups three conditions without parentheses, there are two rules you need

to know. First, has higher precedence than[[]]. This means that is equivalent to[(a
&& b) || c] whereas is equivalentto[a || (b & c)] Second, and[| ] are short-
circuit operators. Thus, immediately returns if its first operand [a] is false, without
evaluating the second operand [b]. Likewise, returns if the first operand [a] is true,

without evaluating the second operand [b].

The following diagrams describe the process for evaluating|a & b || c|and|a || b && c| based on

these two rules.

CASE 1:|a || b && c|is equivalentto|a || (b && c)

——» if a is true —»  return true

—p if bis true —p H return the value of ¢
—» if ¢ is false —p»

—» if b is false —» return false



CASE2:[a && b || c

s e [T ]

is equivalent to

(a && b) || c

—p if b is true —»  return true

—> if b is false —» H return the value of ¢

L——p if a is false —» H return the value of ¢

To illustrate the rules in practice, let's go through several examples that combine true/false values for

[a] [b] and [c] In these examples, we'll use the invalid expression [does-not-matter | This is to

emphasize that some conditions aren't necessarily evaluated thanks to the short-circuit behavior of

(@] anaTT]

julia> [false || true && true]
true

julia> [false || true && false]
false

julia> [true || does-not-matter|
true

julia> [true && false || true]
true

julia> [true && false || false]
false

julia> ]false && does-not-matter || true\
true

FUNCTIONS TO CHECK CONDITIONS ON VECTORS: "ALL" AND "ANY"

Julia provides two built-in functions called |all| and |any| to evaluate multiple conditions in a
collection. The function returns if every condition is true, whereas returns if at
least one condition is true. The functions require either directly specifying the conditions through a

Boolean vector or defining the condition to check through a function. Next, we cover each case

separately.

VECTORS FOR REPRESENTING MULTIPLE CONDITIONS

In the following, we demonstrate the syntax of [all|and [any| when they take a Boolean vector as

their argument.




a =1
b = -1

# function indicating whether all elements satisfy the condition
are_all_positive = all([a > 0, b > 0])

# function indicating whether at least one element satisfies the condition
is_one_positive = any([a > 0, b > 0])

julia> [are_all_positive]

false

julia> [is_one_positive]

true

The function returns only when all the conditions are satisfied, thus requiring that each

vector's entry is positive. This doesn't hold in the example, since [b = -1]. Conversely, returns
when at least one of the conditions holds, thus requiring at least one element in the vector to

be positive. This is satisfied in the example, since[a = 1].

As we indicated, [all| and |any| do not support passing multiple conditions as separate arguments.

This entails that expressions like [all(a > 0, b > 0)|aren't allowed. Nevertheless, this restriction

actually makes the functions more flexible, as they enable the use of broadcasting operations for
checking multiple conditions. For example, the following code snippet implements the same
operations as above, but through a vector .

X = [1, -1]

are_all_positive = all(x .> 0)
is_one_positive = any(x .> 0)

julia> [are_all_positive]

false

julia> [is_one_positive]

true

FUNCTIONS FOR REPRESENTING MULTIPLE CONDITIONS

In addition to expressing conditions through vectors,

all| and [any| allow passing a function to

represent the condition to check. The syntax for this is [all(<function>, <array>)| and
[any(<function>, <array>)] where can be an anonymous function. The following
examples demonstrate how to implement|{all(x .> 0)]and|any(x .> 0) |using this approach.




X = [1, -1]

are_all_positive = all(i —> i > 0, x)

is_one_positive = any(i -> i > 0, x)

julia> [are_all_positive]

false

julia> [is_one_positive]

true

By passing a function as an argument, [all|and |any | can additionally be employed to evaluate the
same condition across multiple vectors. This is achieved by broadcasting and[any]|.

[11 _1]
= [1, 1]

are_all_positive = all.(i -> i > 0, [x,y1)
is_one_positive any.(i —=> i > 0, [x,y])

julia> |are_a11_positive| # all elements in 'y' are positive, but not in 'x'
2-element BitVector:

0

1

julia> |isfone7positive| # at least one element of 'x' or 'y' is positive
2-element BitVector:

1

1




4c. Conditional Statements
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INTRODUCTION

Programs routinely perform different operations depending on their execution flow. To handle these
possibilities, programs rely on conditional statements, which enable the execution of specific code
blocks only when certain conditions are met.

Each code block of a conditional statement is referred to as a branch. Based on the number of
branches, there are three types of conditional statements:

o if-then statements, which consist of a single branch. They run a specific operation only if a
condition is met, with no operation performed otherwise.

 if-else statements, which consist of two branches. They run a specific operation if a
condition is met, and another if the condition isn't satisfied.

o if-else-if statements, which consist of three or more branches. They comprise a series of
conditions, with each branch executing a different code block.

Next, we cover each in depth. The presentation builds heavily on the logical operators introduced in
the previous section. If you haven't read it, | highly recommend doing so before continuing.

IF-THEN STATEMENTS

If-then statements execute an operation only when a condition is met, doing nothing instead when the
condition isn't satisfied. These statements can be constructed via:

o the[if]keyword,
o the logical operator [&&],
« the logical operator [] [].

The approach via keyword is self-explanatory. As for the logical operators, executes an
operation if the condition is true, whereas [| | | does it when the condition is not satisfied. In fact,[ | []is
equivalent to [&& | with its condition negated.

Below, we illustrate the syntax for each form. The examples rely on the function, which
displays the text passed as argument in the REPL.
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if x >0
println("x is positive")
end

"X 1is positive"

(x > 0) && (println("x is positive"))

"X is positive"

(x = 0) || (println("x is positive™"))

"X is positive"

Note that if-then statements imply that no action would've been taken if, for instance, we had used E

= -1|as a condition—it's only when [x > @|that|println]is executed.

The approach offers the most flexibility, making it ideal for complex conditional statements.
However, it's somewhat verbose for simple conditional statements. For these cases, and [[]]are
preferred, as they help us keep the code streamlined.

A common application of [|[]is in conjunction with the function to handle errors. This
construct immediately interrupts the script's execution when the condition isn't satisfied, displaying

the provided message as the argument of [error]. For instance, consider a function that
requires non-negative values for [x]. To enforce this, you could include [x > @ || error("x must be

positive")| at the beginning of the function. If is then called with a non-positive [x], it'll

immediately halt its execution and print the error message "x must be positive" in the REPL.

4
Remark

Note that and [[1] behave like if-then statements when they
combine a condition with an operation. This is different from using
them exclusively with conditions, where all operands would be
values.

IF-ELSE STATEMENTS

If-else statements execute an operation when a condition is true and another operation when the
condition is false. There are two forms to write these statements.



The first one is the most flexible and uses the keyword in combination with [else]. The second
method relies on the so-called ternary operator, which requires the keywords and [:] via the
syntax [<condition> ? <operation if true> : <operation if false>| This is referred to as the

ternary operator because it's the only operator in most programming languages that takes three
arguments.

We illustrate the syntax of both approaches below.

if x > 0

println("x is positive")
else

println("x is not positive")
end

"X is positive"

x > 0 ? println("x is positive") : println("x is not positive")

"X is positive"

The function offers an alternative for constructing if-else expressions. This function takes
three arguments: a condition, an expression to be evaluated if the condition is true, and another one if
false.

One advantage of using a function for an if-else statement is that it supports broadcasting. This is
particularly helpful when creating vectors whose elements vary according to a condition, as
demonstrated below.

X = [4, 2, -6]

are_elements_positive = ifelse.(x .> 0, true, false)

julia> |are_elements_positive|
3-element BitVector:

1

1

0




X = [4, 2, -6]

x_absolute_value ifelse.(x .2 0, x, -x)

julia> [ x_absolute_value|
3-element Vector{Int64}:
4

2

6

Remark
Broadcasting requires broadcasting both and the
condition. The first example, for instance, would throw an error if we

execute [ifelse. (x>0, true, false)| This is because would
attempt to check if the entire vector is positive, which is an operation

undefined in Julia.

IF-ELSE-IF STATEMENTS

So far, we've analyzed conditional statements that handle only two possibilities: one when the
condition is met, and another if it isn't. This binary structure can be limiting when multiple alternatives

need to be considered. Basically, it forces you to nest several [if | and |else| statements to manage

additional conditions.

To simplify this process, we can use the keyword to extend the [if|and[else]approach. This
is illustrated below.

x = -10

if x >0

println("x is positive")
elseif x ==

println("x is zero")
end

x = -10

if x > 0

println("x is positive")
elseif x ==

println("x is zero")
else

println("x is negative")
end

"X 1s negative"




The first examples showcase the benefits provided by the approach. Specifically, eliminates
the need to explicitly specify actions for every possible scenario. Instead, it performs an action if [x] is
positive, another action if is zero, but it does nothing otherwise. In contrast, using |if|and |else
would require an exhaustive approach, where all possible contingents must be accounted for.

Likewise, the second example demonstrates that combinations of the [if] [else], and [elseif
keywords are possible.

FOOTNOTES

! The function does not behave as a short-circuit operator. This means that all the operations are
computed, despite that only one of them will ultimately be returned as output.
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4d. For-Loops

Martin Alfaro

PhD in Economics

INTRODUCTION

A key feature of programming is its ability to automate repetitive tasks, making for-loops play a crucial
role in coding. They let you execute the same block of code repeatedly, treating each element in a list
as a different input.

While for-loops are fundamental in every programming language, their importance is especially
pronounced in Julia: unlike other languages (e.g., Matlab, Python, and R), which often discourage for-
loops in performance-critical code, Julia relies on them to achieve high performance.

The role of for-loops in optimizing performance will be explored in Part Il. Here, we'll primarily
introduce the tool itself, focusing on its syntax, constructions, and common iteration techniques.

SYNTAX

For-loops delimit their scope via the keywords |for | and [end|. To illustrate their syntax, consider the

function [printin(a)], which evaluates [a] and displays its output in the REPL. In case [a] is a string,

simply displays the word stored in[a]. The following script repeatedly applies to
display each word contained in a collection.

FOR-LOOPS SYNTAX
for x in ["hello","beautiful", "world"]
println(x)

end
"hello"
"beautiful"
"world"

4

Remark

The keyword can be replaced by [€] or [=]. ! Consequently, the
following constructions are all equivalent.

IN

for x in ["hello", "beautiful", "world"]
println(x)

end




€

for x € ["hello","beautiful", "world"]
printin(x)

end

for x = ["hello","beautiful", "world"]
println(x)
end

Furthermore, we can employ any character or term to describe the
iteration variable. For instance, we iterate below using[word].

ALTERNATIVE NAME FOR ITERATION VARIABLE

for word in ["hello","beautiful","world"]
println(word)
end

"hello"
"beautiful"
"world"

Based on this example, we can identify three components that characterize a for-loop:

« A code block to be executed: represented in the example by [printin(x)].

« A list of elements: represented in the example by [["hello", "beautiful", "world"]| This
specifies the elements over which we'll apply the code block. The list can contain elements

with any data type (e.g., strings, numbers, and even functions). The only requirement is that
the list must be an iterable object, defined as a collection whose elements can be accessed
individually. An example of iterable object is vectors, as in the example. However, we'll also
introduce others most commonly used, such as ranges.

« An iteration variable: represented in the example by [x]. This serves as a label that takes on
the value of each element in the list, one at a time, during each iteration. The iteration
variable is a local variable, with no significance outside the for-loop. Its sole purpose is to
provide a convenient way to access and manipulate the elements of the list within the loop.

In the following sections, we'll explore different objects that can serve as lists. Furthermore, we'll show
that these lists can comprise elements not immediately obvious. A typical example is functions,
making it possible to apply different functions to the same object.

Always Wrap For-Loops in Functions

At this stage of the website, we're still introducing fundamental
concepts. Thus, we're presenting subjects in their simplest form for



learning purposes. In particular, this explains why for-loops will be
written in the global scope.

However, you should always wrap for-loops in functions. Executing
for-loops outside a function severely degrades performance, and is
additionally subject to different rules regarding variable scoping. 2

ITERATING OVER INDICES

So far, we've considered a simple list like |[["hello", "beautiful", "world"]|to demonstrate how

for-loops work. In real applications, however, manually specifying each element in a list is impractical.
Fortunately, when a list follows a predictable pattern (e.g., a sequence of humbers), we can simply
describe the pattern that generates those elements.

Building on this insight, we'll next explore how to define ranges. They let users define a sequence of
numbers, which is particularly useful to access elements of a collection through their indices.

RANGES
Ranges in Julia are defined via the syntax [<begin>:<steps>:<end>], where represents the

starting index and the ending index. Likewise, sets the increment between values,
defaulting to one when the term is omitted. We can also reverse the order of the sequence, by

providing a negative value for [<steps>]. All this is demonstrated below.

RANGE WITH STEPS GIVEN
for i in 1:2:5

println(i)
end

1

RANGE WITH REVERSE ORDER

for i in 3:-1:1

println(i)
end
3
2
1
4
Remark

The application of ranges isn't limited to for-loops. They can also define
vectors when used in combination with the function.




CREATING A VECTOR FROM A RANGE
x = collect(d:6)

julia>

3-element Vector{Int64}:
4

5

6

ITERATING OVER INDICES OF AN ARRAY

Ranges can be employed to access elements of a collection. When combined with a for-loop, it makes

it possible to apply the same code block to each element of a vector.

Specifically, the expression [1:1length(x) | where | length(x) | returns the number of elements in

allows iteration over all indices of a vector [x]. The same functionality can be achieved with the

function [eachindex(x) |. In fact, this is the recommended approach for iterating over all elements, as it

returns an iterator optimized for each iterable object.

1:LENGTH(X)
x = [4, 6, 8]

for i in 1:length(x)
println(x[i])
end

4
6
8

EACHINDEX
x = [4, 6, 8]

for i in eachindex(x)

println(x[i])
end
4
6
8
)
Remark

There are other approaches to iterating over all indices of a vector [x]
, or

For instance, you can use  |LinearIndices(x)
| firstindex(x):lastindex(x) | to specify a range from the first to the
last index of [x].




This multiplicity of methods exists to handle non-standard indices, such
as those provided by the |[offsetArrays.j1| package. This package sets

the first index of arrays to 0, a common convention in many
programming languages. Nevertheless, unless you're developing a
package for other users, you don't need to worry about which approach
to implement. Indeed, they can all be used interchangeably, as shown
below.

EACHINDEX
x = [4, 6, 8]

for i in eachindex(x)
println(x[i])
end

4
6
8

1:LENGTH(X)
x = [4, 6, 8]

for i in 1:length(x)
println(x[i])
end

4
6
8

LINEARINDICES
x = [4, 6, 8]

for i in LinearIndices(x)
println(x[i])
end

4
6
8

FIRSTINDEX(X):LASTINDEX(X)
x = [4, 6, 8]

for i in firstindex(x):lastindex(x)
println(x[il)
end

4
6
8




Among the available alternatives, is preferable because it
automatically selects the most efficient method for each type of

collection. Additionally, the syntax is consistent across all indexing
conventions.

RULES FOR VARIABLE SCOPE IN FOR-LOOPS

Similar to functions, for-loops create a new variable scope. In fact, the scoping rules for both are
similar, with one key difference: for-loops can modify global variables, whereas functions cannot.

Warning!
The general scoping rules presented here apply universally, except in

rare edge cases that result from poor coding practices. Since this
scenario is uncommon, we only outline it next.

Basically, the issue occurs when i) the for-loop is not wrapped in a
function, /i) a local variable shares the same name as a global variable,
and Jij) the script is run non-interactively (i.e., using the function

and a script file). 3

Unless the three conditions hold simultaneously, you don't have to
worry about this scenario. And even if this occurs, Julia will display a
warning in the REPL indicating that there's a problem with your code.

To formalize the variable scope of for-loops, we'll refer to a variable [x]. The rules governing its scope
are:

* the variable of iteration |x |is always local, regardless of whether there's a variable | x | defined
outside the for-loop.

« if there's no variable named [ x| outside the for-loop, [x]is a new local variable. Moreover, this

variable won't be accessible outside the for-loop.
o if there's a variable named | x| outside the for-loop, | x | refers to this variable.

The following code snippets illustrate the first two rules, which exclusively refer to local variables. The
second example is particularly noteworthy, as it highlights a common mistake made by beginners:
running a for-loop that defines a local variable, and then trying to access it outside the for-loop.



ITERATION VARIABLE IS LOCAL
X =2

for x in ["hello"] # this 'x' is local, not related to 'x = 2'
println(x)
end

"hello"

DEFINING LOCAL VARIABLE

#no 'x' outside the for-loop

for word in ["hello"]
X = word # 'x' is local to the for-loop, not available outside it
end

julia>

ERROR: UndefVarError: x not defined

Likewise, the following example demonstrates the consequences of the last rule we mentioned. This
refers to the consequences of variable scope for global variables.

REFERRING TO THE GLOBAL X
x = [2, 4, 6]

for i in eachindex(x)
x[i] * 10 # it refers to the 'x' outside of the for-loop
end

julia>

3-element Vector{Int64}:
20

40

60

REASSIGNING THE GLOBAL X
x = [2, 4, 6]

for word in ["hello"]
x = word # it reassigns the 'x' defined outside the for-loop
end

julia>

"hello"

ARRAY COMPREHENSIONS




To seamlessly create arrays via for-loops, you can use array comprehensions. Their syntax is

| [<expression> for... if...]| where|<expression>|denotes either an operation or a function.

For illustration purposes, consider a vector . Suppose that the goal is to create a vector |y| with
elements equal to the square of the corresponding element in [x]. The following code snippets show
two approaches to creating |y |via array comprehensions.

COMPREHENSION USING AN OPERATION
X = [1,2,3]

y = [a"2 for a in x] #ory = [x[i]"2 for i in eachindex(x)]

julia>

3-element Vector{Int64}:
1
4
9

COMPREHENSION USING A FUNCTION

X = [1,2,3]
foo(a) = a"2
y = [foo(a) for a in x] # or y = [foo(x[i]) for i in eachindex(x)]
julia>
3-element Vector{Int64}:
1
4
9

Array comprehensions also allow for creating vectors based on conditions. In such instances, the
condition must be placed at the end of the expression.

COMPREHENSION WITH CONDITION

x = [1 for i in 1:4 if i = 3]

julia>
3-element Vector{Int64}:
1

2

3

4
Remark

Array comprehensions can also create matrices. Its syntax demands a
comma to separate the description of each dimension.




COMPREHENSION FOR MATRICES

y =[i* 3j for i in 1:2, j in 1:2]
julia>

2x2 Matrix{Int64}:

1 2
2 4

ITERATING OVER MULTIPLE OBJECTS

Thus far, we've considered for-loops that iterate over single values. We now extend their application to
simultaneous iterations over multiple values. Specifically, we'll examine two scenarios:
simultaneous iterations over two lists and over both the indices and values of a vector.

ITERATING OVER TWO LISTS

Depending on how elements should be combined, we can define two approaches to simultaneously
iterating over two lists [x] and [y] First, the function [Iterators.product(x,y)]| makes it possible to
iterate over all the possible combinations of elements. This function is part of the package
imported by default in each Julia session.

Alternatively, you can iterate over all the ordered pairs of and . This is implemented through the
function|zip(x,y) | which provides the pair of i-th elements from|x|and [y|in the i-th iteration.

MULTIPLE ITERATORS (ALL COMBINATIONS)

listl = [1, 2]
list2 = [3, 4]

for (a,b) in Iterators.product(listl,list2) #it takes all possible combinations
println([a,b])

MULTIPLE ITERATORS (PAIRS)

listl = [1, 2]
list2 = [3, u]

for (a,b) in zip(listl,list2) #it takes pairs of elements with the same index
println([a,b])




Using[zip], we can also iterate over multiple values via array comprehensions.

MULTIPLE ITERATORS (ALL COMBINATIONS)

x = [1i* j for i in 1:2 for j in 1:2]

julia>

4-element Vector{Int64}:

B NN B

MULTIPLE ITERATORS (PAIRS)

x = [1 % j for (i,j) in zip(1:2, 1:2)]

julia>
2-element Vector{Int64}:
1

4

SIMULTANEOUSLY ITERATING OVER INDICES AND VALUES
To iterate over each pair of index-value of a vector, we can employ the function.

FOR-LOOPS

x = ["hello", "world"]

for (index,value) in enumerate(x)
println("$index $value™)
end

"1l hello"
"2 world"

ARRAY COMPREHENSION

x = [10, 20]

y = [index * value for (index,value) in enumerate(x)]

julia>
2-element Vector{Int64}:
10

40

ITERATING OVER FUNCTIONS




Functions in Julia are first-class objects, also referred to as first-class citizens. This means that
functions can be manipulated just like any other data type, such as strings and numbers. In particular,
this property makes it possible to store functions in a vector and apply them sequentially to an object.
The following example illustrates this by computing descriptive statistics of a vector x|

ITERATION OVER FUNCTIONS

[10, 50, 100]
[maximum, minimum]

X

list_functions

[foo(vector) for foo in list]

descriptive(vector,list)

julia> [descriptive(x, list_functions)]
4-element Vector{Real}:

100
10

FOOTNOTES
! Recall that[ €] can be written through tab completion using the command [\in].
2-In fact, older versions of Julia were restricting the use of for-loops in the global scope.

3-There are two methods to execute a script. The first method is what we've been using so far, where you work
interactively with Julia. This includes running commands in the REPL's prompt [julia>Jand the execution of a script
through a code editor. The second method consists of executing files that store scripts through the function

[inctude]



5a. Overview and Goals

Martin Alfaro

PhD in Economics

Thus far, we've laid the groundwork by introducing the fundamentals of Julia. We've covered in
particular variables (single-element and collections) and core programming tools (functions,
conditions, and for-loops). At this initial stage, our emphasis was primarily on helping you familiarize
with the core approaches and their syntax. However, we didn't delve into any of these concepts, nor
did we explore how the tools can be applied and combined.

Equipped now with a foundational knowledge of the concepts, we're ready to explore each in greater
depth. Chapter 5 in particular focuses on mutable collections, using vectors as their primary
example. As we begin to integrate these tools, it may take some time to get fully comfortable with
their usage. In fact, you may occasionally need to revisit the sections on functions, conditions, and for-

loops.

Despite that our focus is on vectors, many of the lessons we'll learn are applicable across all mutable
collections. For instance, this is the case for concepts such as indexing and in-place operations. Other
techniques presented extend even further, making their application universal across programming
languages. Examples of this include the notion of mutability, along with the distinction between
assignments and mutations.


https://alfaromartino.github.io/

5b. Mutable and Immutable Objects

Martin Alfaro

PhD in Economics

INTRODUCTION

Objects in programming can be broadly classified into two categories: mutable and immutable.
Mutable objects allow their elements to be modified, appended, or removed at will. They're designed
for flexibility, with vectors constituting a prime example.

In contrast, immutable objects are inherently unchangeable: they prevent additions, removals, or
modifications of their elements. A common example of immutable object is tuples. Immutability
effectively locks variables into a read-only state, safeguarding against unintended changes. Moreover,
it can result in potential performance gains, as we'll show in Part Il of this website.

This section will be relatively brief, focusing solely on the distinctions between mutable and immutable
objects. Subsequent sections will expand on their uses and properties.

Remark

A popular package called [StaticArrays|provides an implementation of
immutable vectors. We'll explore this package in the context of high

performance, as it greatly speeds up computations that involve small
vectors.

EXAMPLES OF MUTABILITY AND IMMUTABILITY

To illustrate the consequences of immutability, the following examples attempt to modify existing
elements of a collection. The examples rely on vectors as an example of a mutable object and tuples
for immutable ones. Additionally, we present the case of strings as another example of immutable
object. Recall that strings are essentially sequences of characters, usually employed to represent text.

X [3,u4,5]

juties
julia>

3-element Vector{Int64}:
0
4

5
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x = (3,4,5)

julia>
ERROR: MethodError: no method matching setindex!(::Tuple{Int64, Int64, Int64}, ::Int64,
::Int64)

x = "hello"
julia>

"h': ASCII/Unicode U+0068 (category L1l: Letter, lowercase)

ERROR: MethodError: no method matching setindex!(::String, ::Int64, ::Int64)

The key characteristic of mutable objects is their ability to modify existing elements. Moreover,

mutability also commonly allows for the dynamic addition and removal of elements. In a subsequent
section, we'll present various methods for implementing this functionality. For now, we simply

demonstrate the concept by using the functions |push!| and [pop!| which respectively add and

remove an element at the end of a collection.

x = [3,u]

push!(x, 5) # add element 5 at the end
julia>
3-element Vector{Int64}:

3

4

5
x = [3,4,5]

pop! (x) # delete last element
julia>

2-element Vector{Int64}:

3

4
x = (3,4,5)

pop!(x) # error, just like push!(x, <some element>)
ERROR: MethodError: no method matching pop!(::Tuple{Int64, Int64, Int64})
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5c¢. Assignments vs Mutations

Martin Alfaro

PhD in Economics

INTRODUCTION

The upcoming sections will be entirely devoted to vector mutation. However, to properly cover this
subject, we first need to introduce some preliminary concepts, including:
« the distinction between assignments and mutations

e methods for initializing arrays to eventually mutate them

e techniques for vector indexing to select elements
The current section in particular focuses on distinguishing between assignments and mutations of
variables. The difference between both operations can easily go unnoticed by new users, as both

operations use the operator E| despite being fundamentally different. Clearly delineating these
operations is important not only for Julia, but also other programming languages.

SOME BACKGROUND

Recall that variables serve as labels for objects, with objects in turn holding values. Moreover,
objects can be classified according to the number of elements contained, ranging from single-
element objects (e.g. integers and floating-point numbers) to collections (e.g. vectors).

NUMBER VECTOR
2 elﬁts
- _ 4,5, 6]
R —
object object

The distinction between objects and their elements is crucial for the remainder of the section. This is
because assignments apply to objects, whereas mutations apply to elements. More specifically,
assignments rebind variables to new objects, while mutations simply modify existing elements of an
existing object.

ASSIGNMENTS VS MUTATIONS
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Assignments bind variables to objects, a process implemented via the E| operator. For instance, | x =

3] and are examples of assignments, where [3] and represent the objects
being assigned to[x]

Mutations, by contrast, modify the elements of an object, without creating a new one. These
operations also rely on the [=] operator, with being an example of mutation.

Despite sharing the same operator [=], assignments and mutations are conceptually distinct. This
difference can be better appreciated by visualizing objects as specific memory addresses. This
implies that assignments like involve two steps: /) finding a memory location to store the
object with value | [4,5]] and ii) labeling the memory address as | x| for easy access. In contrast, a
mutation modifies the contents of the object, but without changing its memory address.

To illustrate this, consider the example [x = [4,5]] where the object is stored in a particular
memory location. If you then run [x = [6,7]1] [x] becomes associated with a new object containing

[[6,71] thus constituting an assignment. However, if you execute afterwards, the operation
modifies the original object [[6,7]] to [[6,0]]. This operation constitutes a mutation because [x

continues to reference the same memory address, even though its content has changed.

MUTATION ASSIGNMENT
i[z[;i’(i]; é r ———» | [05] ijé% i x\ [4,5]
[6,7]
( Remark

You can mutate all the elements of [x], without this necessarily entailing
a new assignment. For example, this occurs when we modify the values

of [x] by mutating [x[:1].

X [4,5]
x[:1 = [0,0]
julia>

2-element Vector{Int64}:
0
0




The distinction is particularly important since mutations tend to be
faster than creating new objects. This will become relevant in Part I,
where we explore strategies for speeding up operations.

ALIAS VS COPY

So far, we've emphasized the critical distinction between assignments and mutations. Since both
operations rely on the E| operator, we must then inquire when E| will entail one or the other
operation. Next, we explore in particular cases like [y = x|, characterized by entire objects on each
side of [=] Other cases are left for the upcoming sections, after we introduce the concept of slices (i.e,
subsets of elements from a vector).

In Julia, executing makes [y] another name for the object referenced by [x]. This means that [x
and become different labels for the same underlying object. Formally, it's said that |y | constitutes

an alias of [x]

Note that shouldn't be understood as binding [y |to [x]itself. Rather, it means that [y | becomes
another label for the object that references. This subtle distinction carries a significant practical

implication: reassigning [x] to a new object won't affect [y s reference.

To clarify this further, let's consider an example where we first execute and then [y = x| At
this point, both [x] and [y] reference the same object, which holds the value [2] If we eventually

execute [x_= 4], the variable [x] will start pointing to a new object that holds the value [4]. However,
this won't affect the original object that| x| was referencing. As a result, |y | will still point to the original
object with value[2]. This behavior is illustrated below.

CORRECT INCORRECT
T — 9.
2= —m [E] =
CONSEQUENCE NOT THE CONSEQUENCE

T =2; r ——>»| 4 w=2
y=a i y=a SUIGEN
. =4




X #'x' points to an object with value 2

y #'y' points to the same object as 'x' (do not interpret it as 'y' pointing to 'x')
X = U  #'x' now points to another object (but 'y' still points to the object holding 2)
julia>

4

julia>

2

Remark

Two variables could comprise identical elements and yet refer to
different objects.

This can be demonstrated using the operators [==] and [===], which
assess two different types of equality. Specifically, [x == y]| checks
whether [x] and [y] have equal values, regardless of whether they refer
to the same object. In contrast, checks whether both [x] and
point to the same object, thus verifying if they share the same
memory address. By applying these operators, the following example
illustrates that objects with identical elements aren't necessarily
referencing the same object.

[4,5]

X
1

y =X

julia>

true # x° and "y  have identical elements

julia>
true #x° and 'y° DO point to the same
object

[4,5]

x
1

y = [4,5]

jutie>

true # x and "y  have identical elements

julia> |x ===
false #°x° and “y° DO NOT point to the same
object




GRAPHICAL REPRESENTATION

Y

= %: é Z"’/”'
A ) — [475]

We've indicated that the operation creates an alias of [x], making[y]and [x]two different labels
for the same object. This implies that modifying the elements of either | x| or |y | will necessarily
change the elements held by both. The following diagram and code snippet illustrate this.

GRAPHICAL REPRESENTATION

x[1] = 0

julia>

2-element Vector{Int64}:
0

5

julia>
2-element Vector{Int64}:

0
5

If you instead want to treat [x] and [y] as separate objects, you must apply the function [copy]. This
creates a new object with identical elements as the original. In this way, any modification to the new
object won't affect the original one, allowing you to work with | x| and |y |independently.

x[1] = 0

julia>

2-element Vector{Int64}:
0

5

julia>

2-element Vector{Int64}:
4

5




5d. Initializing Vectors
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INTRODUCTION

We continue introducing preliminary concepts for mutations. The previous section distinguished
between the use of [=] for assignments and mutations. Now, we'll deal with approaches to creating
vectors.

Our presentation starts by outlining the process of initializing vectors, where memory is reserved
without assigning initial values. We'll then discuss how to create vectors filled with predefined values

such as zeros or ones. Finally, we show how to concatenate multiple vectors into new ones.

INITIALIZING VECTORS

Creating an array involves two steps: reserving memory for holding its content and assigning initial
values to its elements. However, if you don't intend to populate the array with values right away, it's
more efficient to only initialize the array. This means reserving memory space, but without setting any
initial values.

Technically, initializing an array entails creating an array filled with values. These values
represent arbitrary content in memory at the moment of allocation. Importantly, while displays
concrete numbers when you output the array's content, they're meaningless and vary every time you
initialize a new array.

There are two methods for creating vectors with values. The first one requires you to explicitly

specify the type and length of the array, which is accomplished via|Vector{<elements' type>}(undef,
<length>) | The second approach is based on the function [similar(x) | which creates a vector with
the same type and dimensions as an existing vector [x]

x_length 3

X Vector{Inté6u}(undef, x_length) # 'x' can hold 'Inté64' values, and is initialized with
3 undefined elements

julia>

3-element Vector{Int64}

140724480121488
2497084710592
2497285012816
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y = [3,4,5]

x = similar(y) # 'x' has the same type as 'y', which is Vector{Inté4}
Cundef, 3)

julia>

3-element Vector{Int64}:
2497063587648
2497063587664
2497355825296

The example demonstrates that values don't follow any particular pattern. Moreover, these
values vary in each execution, as they reflect any content held in RAM at the moment of allocation. In
fact, a more descriptive way to call [undef |values would be uninitialized values.

CREATING VECTORS WITH GIVEN VALUES

In the following, we present several approaches to creating arrays filled with predefined values.

VECTORS WITH RANGE

If our goal is to generate a sequence of values, we can employ the function|collect(<range>) | Recall
that the syntax for defining ranges is [<start>: <steps>: <stop>], where establishes the
gap between elements.

some_range = 2:5

collect(some_range)

X

julia>
4-element Vector{Int64}:
2

3
4
5

Notice that when a range is created, implicitly dictates the number of elements to be
generated. Alternatively, you could specify the number of elements to be stored, letting be
implicitly determined. This is achieved by the function [range] whose syntax is [range(<start>,

<end>, <number of elements>)|.1

The following code snippet demonstrates the use of [range] by generating five evenly spaced
elements between 0 and 1.

x = range(0, 1, 5)

julia>

0.0:0.25:1.0




x = range(start=0, stop=1, length=5)

julia>

0.0:0.25:1.0

x = range(start=0, length=5, stop=1) # any order for keyword arguments

julia>

0.0:0.25:1.0

VECTORS WITH SPECIFIC VALUES

We can also create vectors of some given length filled with the same repeated value. In particular, the
functions and respectively create vectors with zeros and ones. By default, these
functions define elements, although you can specify a different type in the first argument of
the function.

1
w

length_vector

X

julia>

3-element Vector{Float64}:
0.0

0.0

0.0

zeros(length_vector)

1
w

length_vector

zeros(Int, length_vector)

X

julia>

3-element Vector{Int64}:
(0]

(0]

0

1
w

length_vector

X

julia>

3-element Vector{Float64}:
1.0

1.0

1.0

ones(length_vector)




1l
w

length_vector

X

julia>

3-element Vector{Int64}:
1

1

1

ones(Int, length_vector)

For creating Boolean vectors, Julia provides two convenient functions called | trues|and|falses|.

1
w

length_vector

X

julia>

3-element BitVector:
1

1

1

trues(length_vector)

1
w

length_vector

X

julia>

3-element BitVector:
0

0

(¢}

falses(length_vector)

VECTORS FILLED WITH A REPEATED OBJECT

To define vectors comprising elements different from zeros or ones, Julia provides the function.
Unlike the previous functions, this accepts any arbitrary scalar to be repeated.

length_vector
filling_object

X

fill(filling_object, length_vector)

julia>

1
1
1

3-element Vector{Int64}:




length_vector =3
filling_object [1,2]

X

julia>

3-element Vector{Vector{Int64}}:
[1, 2]

[1, 2]

[1, 2]

fill(filling_object, length_vector)

length_vector =3
filling_object [1]

fill(filling_object, length_vector)

X

julia>

3-element Vector{Vector{Int64}}:
[1]
[1]
[1]

CONCATENATING VECTORS

Finally, we can create a vector [z] that merges all the elements of two vectors [x] and [y]. One simple
approach for doing this is through [z = [x ; y1] While this method is suitable for concatenating a few
vectors, it becomes impractical with a large number of vectors, and directly infeasible when the
number of vectors to concatenate is unknown.

For these scenarios, we can instead employ the function which merges all its arguments into
one vector. By use of the splat operator [ . . . ], the function can also be applied with a single argument
that comprises a list of vectors. ?

[3,4,5]
[6,7,8]

< X
1

z = vcat(x,y)

julia>

6-element Vector{Int64}:
3

4




= [3,4,5]
[6,7,8]

< X
1

A
z

[x, vyl
vcat(A...)

julia>

6-element Vector{Int64}:
3

4

Closely related to vector concatenation is the function, which defines a vector containing the

same object multiple times. Importantly, unlike |fill

U

repeat| requires an array as its input,

throwing an error if a scalar is passed in particular.

3
[1,2]

nr_repetitions
vector_to_repeat =

X repeat(vector_to_repeat, nr_repetitions)

julia>

6-element Vector{Int64}:
1

2

1
w

nr_repetitions
vector_to_repeat =

[1]

X repeat(vector_to_repeat, nr_repetitions)

julia>

3-element Vector{Int64}:
1

1

1

nr_repetitions =
vector_to_repeat

1l
= W

X repeat(vector_to_repeat, nr_repetitions)

ERROR: MethodError: no method matching repeat(::Int64, ::Int64)

ADDING, REMOVING, AND REPLACING ELEMENTS (OPTIONAL)




Warning!
This subsection requires knowledge of a few concepts that we haven't
discussed yet. As such, it's marked as optional.

One such concept is in-place functions, identified by the symbol |I|
appended to the function's name. The symbol is simply a notation
added by developers, hinting that the function modifies the value of at
least one of its arguments. In-place functions will be explored
thoroughly later).

Another concept introduced is pairs, which will also be examined
comprehensively in a future section. For the purposes of this
subsection, it's sufficient to know that pairs are denoted by [a => b],
where |E| in our application refers to some value and |E| represents its
corresponding replacement value.

Next, we show how to add, remove, and replace elements of a vector. To add a single element in
particular, the methods are as follows.

X
element_to_insert

[3,4,5]
0

push!(x, element_to_insert) # add 0 at the end - faster

julia>
4-element Vector{Int64}:
3

[CIE RN

[3,4,5]
element_to_insert = 0

X

pushfirst!(x, element_to_insert) # add @ at the beginning - slower

julia>
4-element Vector{Int64}:
(0]

3
4
5
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X = [3,4,5]
element_to_insert = 0
at_index =2
insert!(x, at_index, element_to_insert) # add 0 at index 2
julia>
4-element Vector{Int64}:
3
(0]
4
5
X = [3,4,5]
vector_to_insert = [6,7]
append!(x, vector_to_insert) # add 6 and 7 at the end
julia>
5-element Vector{Int64}:
3
4
5
6
7

The function is particularly helpful to collect results in a vector. This is because, as it doesn't
require any prior knowledge about the number of elements to be stored, we can dynamically grow the
vector by adding more results. Notice that adding elements at the end via is faster than doing

so at the beginning via | pushfirst!].

Analogous functions exist to remove elements, as shown below.

X = [5,6,7]
pop!(x) # delete last element
julia>
2-element Vector{Int64}:
5
6
X = [5,6,7]
popfirst!(x) # delete first element
julia>
2-element Vector{Int64}:
6
7




X
index_of_removal

[5,6,7]
2

deleteat!(x, index_of_removal) # delete element at index 2

julia>

2-element Vector{Int64}:
5

7

X [5,6,'7]

indices_of_removal = [1,3]

deleteat!(x, indices_of_removal) # delete elements at indices 1 and 3
julia>

1-element Vector{Int64}:

6

Emulating the behavior of [deleteat! ] we can also indicate which elements should be retained.

X [5,6,7]

2

index_to_keep

keepat!(x, index_to_keep)

julia>
1-element Vector{Int64}:
6

X
indices_to_keep

[5,6,7]
[2,3]

keepat!(x, index_to_keep)

julia>
1-element Vector{Int64}:
6

Finally, we can replace specific values with new ones. This can be done by creating a new copy via

or by updating the original vector with [replace! |

Both functions make use of pairs where [a] is some value and [b] its corresponding
replacement value. Note that these functions perform substitutions based on values, rather than
indices.



x = [3,3,5]

replace!(x, 3 => 0) # in-place (it updates x)

julia>

3-element Vector{Int64}:
(0]

(0]

5

x = [3,3,5]

replace!(x, 3 => 0, 5 => 1) # in-place (it updates x)

julia>

3-element Vector{Int64}:
(0]

(0]

1

x
1

[3,3,5]

y = replace(x, 3 => 0) # new copy

julia>

3-element Vector{Int64}:
0

(0]

5

[3,3,5]

x
1

y = replace(x, 3 => 0, 5 => 1) # new copy

julia>

3-element Vector{Int64}:
(0]

(0]

1

FOOTNOTES

! Note that[range|represents a convenient syntax for [<start> : 1 / <number of elements> : <end>|.

2-Recall that the operator|Z| splits a collection into multiple arguments. This enables the use of a vector or tuple
to denote multiple function arguments. For further details, see here under the subsection "Splatting".
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5e. Slices: Copies vs Views

Martin Alfaro

PhD in Economics

INTRODUCTION

This section concludes the coverage of preliminary concepts for studying mutations by focusing on the
behavior of a vector's slice. This is defined as a subset of a vector's elements, formally represented as

|x[<indices>]].

Importantly, slices act differently depending on how they're included in a statement, functioning
as either:
e copies of the original vector, thus creating a new object at a new memory address.

e views of the original vector, where the original object and the slice share the same memory
address.

In the following, we explain the distinction between copies and views in detail. Understanding it is
crucial for mutating slices, as mutations can only occur when the slice references the original object. In
contrast, if a slice acts as a copy, the parent object and the slice are unrelated, with changes to the

slice having no impact on the original object.

SLICES AND THE ASSIGNMENT OPERATOR

Vector mutation involves modifying slices through the operator [=] For this to be possible, a
prerequisite is that the slice references the original object. Nonetheless, the behavior of slices in
assignments varies depending on their position within the expression.

Specifically, slices on the left-hand (LHS) side of E| act as views. In this case, slices reference the
original elements, thus allowing for the mutation of its parent object. In contrast, slices on the right-
hand side (RHS) of [=] create a copy. Since copies point to a new object, any modification to the slice
won't affect the original object.

The following code snippet demonstrates both behaviors.

X [4,5]

x[1] 0 # 'x[1]' is a view and mutates 'x'

julia>

2-element Vector{Int64}:
0

5
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X = [d,5]
y = x[1] # 'y' is unrelated to 'x' because 'x[1]' is a copy
x[1] = 0 # it mutates 'x' but does NOT modify 'y'
julia>
4
r - 0
Aliasing vs Copy
Objects on the RHS of [=] are only treated as copies when it comes to
slices, such as in statements |y = x[<indices>]| Instead, if we insert
the whole object [x] on the RHS of [=] as in the operation
creates an alias. In this case, |y| and | x| will reference the same object,
and so any modification made to [y will also be reflected in [x].
X = [4,5]
v = X # the whole object (a view)
x[1] =0 # it DOES modify 'y'
julia>
2-element Vector{Int64}:
4
5
X = [u4,5]
= x[:] # a slice of the whole object (a copy)
x[1] = 0 # it does NOT modify 'y'
julia>
2-element Vector{Int64}:
0
5
L

THE FUNCTION 'VIEW'

Identifying when slices act as copies or views is relevant for high performance, as views eliminate the
overhead associated with memory allocations. Although this topic will be explored in Part Il of the
website, such considerations underscore the importance of distinguishing between copies and slices,
beyond their use in assignments.

As a rule of thumb, slices typically default to creating copies. This is the case when, for instance, a
slice is passed as a function argument or when used within an expression not involving an assignment.
These scenarios are illustrated below.



x = [3,4,5]

#the following slices are all copies
log. (x[1:21)

x[1:2] .+ 2
[sum(x[:]) * a for a in 1:3]

(sum(x[1:2]) > 0) && true

In all these cases, transforming slices into views requires an explicit indication. To achieve this, you

need to employ the function [view]. Its syntax is [view(x, <indices>)] where represent

the subset of indices defining the slice. To demonstrate its usage, we revisit and compare the previous
code snippet.

x = [3,4,5]

#we make explicit that we want views
log. (view(x,1:2))

view(x,1:2) .+ 2
[sum(view(x,:)) * a for a in 1:3]

(sum(view(x,:)) > 0) && true

x = [3,4,5]

#the following slices are all copies
log.(x[1:21)

x[1:2] .+ 2

[sum(x[:]) * a for a in 1:3]

(sum(x[1:2]) > 0) && true

These examples reveal the potential verbosity involved when isn't used sparingly. To address
this issue, Julia provides the macros|@view |and |@views]|.

The macro is equivalent to [view], allowing you to write [@view x[1:2]] instead of [view(x,

1:2) | However, its advantages are somewhat limited: it saves only a few characters, and additionally

necessarily requires parentheses when multiple slices are used (e.g., [@view(x[1:2]) .+
@view(x[2:3])]). In contrast, the macro significantly streamlines notation, by automatically
converting every slice within an expression into a view.




x = [4,5,6]

# the following are all equivalent
y = view(x, 1:2) .+ view(x, 2:3)
y = @view(x[1:2]) .+ @view(x[2:3])
@views y = x[1:2] .+ x[2:3]

One of the most notable applications of [@views | is in functions. By placing at the beginning of
a function, you automatically convert every slice within the function body and its arguments into a

view.

@views function foo(x)
y = x[1:2] .+ x[2:3]
z = sum(x[:]) .+ sum(y)

return z
end

function foo(x)
y = @view(x[1:2]) .+ @view(x[2:3]1)
z = sum(@view x[:]1) .+ sum(y)

return z
end
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INTRODUCTION

In order to mutate vectors, you first need to identify the elements you wish to modify. This process is
known as vector indexing. We've already covered several basic methods for indexing, including

vectors and ranges (e.g., [x[[1,2,3]1] or [x[1:3]). While these approaches are effective for simple
selections, they fall short for more complex scenarios, precluding for example selections based on

conditions.

This section expands our toolkit by introducing some additional forms of indexing. The techniques
presented primarily build on broadcasting Boolean operations.

LOGICAL INDEXING

Logical indexing (also known as Boolean indexing or masking) allows you to select elements based on
conditions. Considering a vector , this is achieved using a Boolean vector |y | of the same length as

[x] which acts as a filter: retains elements where [y] is and excludes those where [y] is
[Fatse)

LOGICAL INDEXING

X [1,2,3]
y [true, false, true]

julia>
2-element Vector{Int64}:
1

3

OPERATORS AND FUNCTIONS FOR LOGICAL INDEXING

Logical indexing becomes a powerful tool when we leverage broadcasting operations, allowing you to
easily specify conditions via Boolean vectors. For instance, to select all the elements of [x] lower than
10, you can broadcast a comparison operator or a custom function.



INDEXING VIA BROADCASTING OPERATOR
X = [1, 2, 3, 100, 200]

y x[x .< 10]

julia>
3-element Vector{Int64}:
1

2
3

INDEXING VIA BROADCASTING FUNCTION

X = [1, 2, 3, 100, 200]
condition(a) = (a < 10) #function to eventually broadcast
y = x[condition.(x)]
julia>
3-element Vector{Int64}:
1
2
3

When dealing with multiple conditions, the conditions must be combined using the logical operators
and[[1] " The following example illustrates the syntax for doing this. Note that all operators must
be broadcasted, since logical operators only work with scalar values.

INDEXING VIA BROADCASTING OPERATOR
X = [3, 6, 8, 100]

# numbers greater than 5, lower than 160, but not including 8

y = x[(x .>5) .&& (x .< 10) .&& (x .# 8)]
julia>

1-element Vector{Int64}:

6

INDEXING VIA @.
x = [3, 6, 8, 100]

# numbers greater than 5, lower than 10, but not including 8
y = x[@. (x > 5) & (x < 10) && (x # 8)]

julia>
1-element Vector{Int64}:
6




INDEXING VIA BROADCASTING FUNCTION
X = [3, 6, 7, 8, 100]

# numbers greater than 5, lower than 10, but not including 8

condition(a) = (a > 5) && (a < 10) && (a # 8) #function to eventually broadcast
y = x[condition.(x)]

julia>

1-element Vector{Int64}:

6

The example reveals that directly broadcasting operators may result in verbose code, due to the
repeated use of dots in the expression. In contrast, approaches based on functions or the macro [@.
keep the syntax simple, reducing boilerplate code.

LOGICAL INDEXING VIA |IN|AND @

4
Remark

The symbols |€] and used in this section can be inserted via tab
completion:

* [€]by[\in]
* [€]by[\notin]

Another approach to selecting elements through logical indexing involves and . Each of these
symbols is available as a function and an operator, and they check whether a scalar [a] belongs to a
given collection [1ist]. For simplicity, next we'll refer to as a function and[ €| as an operator.

The function evaluates whether the scalar [a] matches any element in the vector [list],
yielding the same result as [a € list] For example, both [in(2, [1, 2, 3])|and[2 € [1, 2, 3]
return[true] as[2]is an element of [ [1, 2,31 ].

By replacing the scalar[a]with a collection[x] [in]and[€] can define Boolean vectors via broadcasting.
Recall, though, that broadcasting defaults to iterating over pairs of elements. This means that

executing[in.(x, list)]or[x .€ list]will resultin a simultaneous iteration over each pair of [x]and
[list ] However, this isn't the desired operation. Rather, our goal is to check whether each element of

belongs to [list], which requires treating as a single object. This can be accomplished in
several ways, as it was shown here, including wrapping | list]in [Ref].

As an illustration, below we create a vector |y | that contains the minimum and maximum of the vector

[x]




FUNCTION 'IN' AND '€’

X = [-100, 2, 4, 100]
list = [minimum(x), maximum(x)]

# logical indexing (both versions are equivalent)

bool_indices = in.(x, Ref(list))
bool_indices = (€).(x,Ref(list))

y x[bool_indices]

#'Ref(list)’' can be replaced by '(list,)’

julia> [bool_indices|

4-element BitVector:
1

0

0

1

julia>

2-element Vector{Int64}:
-100
100

OPERATOR 'IN' AND '€’

X = [-100, 2, 4, 100]
list = [minimum(x), maximum(x)]

# logical indexing
bool_indices = x .€ Ref(list)

y = x[bool_indices]

#only option, not possible to broadcast

‘in'

julia> |[bool_indices]
4-element BitVector:
1

0

0

1

julia>
2-element Vector{Int64}:

-100
100

Remark

The function has an alternative curried version, allowing the user to
directly broadcast while treating as a single element. The
syntax for doing this is[in(list). (x) |, as shown in the example below.




CURRIED "IN’

X = [2, 4, 100]
list = [minimum(x), maximum(x)]

#logical indexing
bool_indices = x[in(list).(x)] #no need to use 'Ref(list)’
y = x[bool_indices]

julia> [bool_indices|
4-element BitVector:
1
0
0
1
julia>
2-element Vector{Int64}:
-100
100

Remark

The functions and operators [in]and[€]allow for negated versions
and[ €] (equivalent to [ t€])), which select elements not belonging to a set.

Below, we apply them to retain the elements of that are not its
minimum or its maximum.

FUNCTION "IN’ AND '&’

X = [-100, 2, 4, 100]
list = [minimum(x), maximum(x)]

#identical vectors for logical indexing

bool_indices = (!in).(x, Ref(list))

bool_indices = (#).(x, Ref(list)) #or "(!€).(x,
Ref(list))’

julia> |bool_indices]
4-element BitVector:
0

1

1

0

julia> |x[bool_indices]]
2-element Vector{Int64}:
2
4




OPERATORS 'lIN' AND '¢&’

X = [-100, 2, 4, 100]
list = [minimum(x), maximum(x)]

#vector for logical indexing
bool_indices = x .¢ Ref(list)

julia> [bool_indices|
4-element BitVector:
0
1
1
0

julia> | x[bool_indices] |
2-element Vector{Int64}:

2
4

THE FUNCTIONS 'FINDALL' AND 'FILTER'

We close this section by presenting two additional methods for element selection. They're provided by
the functions[filter]and|[findall],

The function returns the elements of a vector [x ] satisfying a given condition. Despite what the
name may suggest, retains elements rather than discard them. The condition is specified by a
function that returns a Boolean scalar.

'FILTER'
X = [51 61 71 81 9]

y = filter(a -> a < 7, x)

julia>

2-element Vector{Int64}:
5

6

The function [findall] does the same as [filter] but returns the indices of [x] With [findall] the

condition can be stated in two ways: either via a Boolean scalar function or a Boolean vector.



'FINDALL' - VIA FUNCTION

x =[5, 6, 7, 8, 9]
y = findall(a -> a < 7, x)
z = x[findall(a -> a < 7, x)]
julia>
2-element Vector{Int64}:
1
2
julia>
2-element Vector{Int64}:
5
6

'FINDALL' - VIA BOOLEAN VECTOR

x =[5, 6,7, 8, 9]

findall(x .< 7)
x[findall(x .< 7)]

y
z

julia>

2-element Vector{Int64}:
1

2

julia>
2-element Vector{Int64}:

5
6

FOOTNOTES

" The logical operators [&&]and [ | | | were introduced in the section about conditional statements.
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INTRODUCTION

This section focuses on in-place operations, a term that encompasses any method that mutates
collections. These operations are characterized by the reuse of existing objects, rather than generating
new ones, giving rise to the expression " modifying values in place."

Understanding whether an operation mutates an object or generates a new one is crucial, as the
outcomes may differ depending on the application. Furthermore, even if results were identical, in-
place modifications commonly entail performance benefits relative to the creation of new objects. This
aspect will be explored in Part Il of the website, when we discuss high performance.

Remark

Before proceeding, | recommend reviewing the definitions of slices
introduced in the previous section. Recall that, given a vector [x] a slice
refers to a subset of ’s elements selected via |x[<indices>] |

Moreover, a slice can act as a copy, in which case we're creating a new
object with its own memory address. Alternatively, the slice can behave
as a view, thereby referencing the original memory address of [x] The
distinction is crucial, as it'll determine whether modifying the slice will
affect the original data or not.

MUTATIONS VIA COLLECTIONS

A simple way to mutate a vector is to replace an entire slice with another collection. This is achieved

using statements of the form |x[<indices>] = <expression>| where [<expression>|must match the

length of [x[<indices>]| The approach effectively mutates | x| because a slice on the left-hand side of

[=] behaves as a view, thus referencing the original object. Below, we provide a few examples of this

approach.
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X = [1, 2, 3]
x[2:end] = [20, 30]
julia>
3-element Vector{Int64}:
1
20
30
X = [1, 2, 3]
x[x .=z 2] = [2, 3] .x 10
julia>
3-element Vector{Int64}:
1
20
30

A common application of this method involves defining |<expression>|through elements from either

the original vector or the slice being modified. This allows for self-referencing updates of the variable.

X = [1, 2, 3]
x[2:end] = [x[i] * 10 for i in 2:length(x)]
julia>
3-element Vector{Int64}:

1

20

30
X = [1, 2, 3]
x[x .2 2] = x[x .2z 2] .* 10
julia>
3-element Vector{Int64}:

1

20

30

Importantly for the mutations via for-loops, a scalar can be used on the right-hand side of [=] for
single-element slices.



X = [1, 2, 3]
x[3] = 30
julia>
3-element Vector{Int64}:
1
2
30

Warning! - Vectors can only be mutated by objects of the same type
When a vector is defined, the type of elements that the vector can hold
is implicitly defined. Consequently, attempting to replace elements with
a different type will result in an error. For instance, the following
examples only admit mutations with values of type [Int64].

x
1

[1, 2, 3] # Vector{Inteu}

x[2:3] [3.5, u] # 3.5 is Floaté64

ERROR: InexactError: Int64(3.5)

X = [1, 2, 3] # Vector{Intéd}
x[2:3] = [3.0, 4] # 3.0 is Floatéed but accepts
conversion
julia>
3-element Vector{Int64}:
1
3
4

MUTATIONS VIA FOR-LOOPS

Replacing a single-element slice with a scalar value enables mutations through for-loops. This is
implemented by substituting the value of a single element during each iteration.

To illustrate the procedure, let's consider a typical application of this approach: populating vectors
with values. The process involves initializing a vector, and then iterating over its elements to assign
desired values.



x
1

Vector{Int6u}(undef, 3) # 'x' is initialized with 3 undefined elements

x[1] =0

x[2] =0

x[3] =0

julia>

3-element Vector{Int64}:

0

0

0

X = Vector{Inté6u}(undef, 3) # 'x' is initialized with 3 undefined elements

for i in eachindex(x)
x[i] = 0
end

julia>

3-element Vector{Int64}:
0

(0]

(0]

The approach relies on on the left-hand side of [=] acting as a view. Alternatively, we could
leverage the function to create a variable that contains all the elements to be modified. This
allows us to work with for-loops that mutate entire objects, rather than a subset of the original object.

The following example demonstrates this by mutating a vector of zeros. Note that the function |zeros

defaults to zeros with type explaining why [1]is automatically converted to [1.0].

X = zeros(3)

for i in 2:3
x[i]l =1
end

julia>

3-element Vector{Float64}:
0.0

1.0

1.0




X zeros(3)
slice = view(x, 2:3)

for i in eachindex(slice)
slice[i] =1
end

julia>

3-element Vector{Float64}:
0.0

1.0

1.0

Warning! - For-Loops Should be Wrapped in Functions

Recall that for-loops should always be wrapped in functions, as failing to
do so severely affects performance. In the next section, where we'll
cover mutating functions, mutations via for-loops will be revisited.

MUTATIONS VIA .=

In terms of syntax, broadcasting serves as a streamlined alternative to for-loops. This principle even
extends to mutations, which can be implemented by broadcasting the assignment operator E| The

syntax for this is [x[<indices>] .= <expression>| where [<expression>|can be either a vector or a

scalar.

In the specific case of |x[<indices>]|on the left-hand side and a vector for [<expression>

, the [.=

operator produces the same outcome as using [=] with a corresponding collection. In fact, using [=

rather than E| in these cases tends to be more performant.

[3, 4, 5]

x
1

x[1:2] = x[1:2] .* 10

julia>
3-element Vector{Int64}:
30
40
5




X = [3, 4, 5]
x[1:2] .= x[1:2] .*» 10 # identical output (less performant)
julia>
3-element Vector{Int64}:
30
40
5

Considering this, the primary use cases ofE| for mutating | x | involve expressions like:

e [x[<indices>] .= <scalar>| and

o [y .= <expression>|where[y]is either a view of[x] or [x] itself.

Next, we analyze each case separately.

SCALARS ON THE RIGHT-HAND SIDE OF =

Applying[=] to replace multiple elements with the same scalar value requires a collection matching the

number of elements being substituted. However, with the [.=] operator, you can streamline the
process by simply writing[x[<indices>] .= <scalar>|.

For instance, the following code snippet uses this approach to replace every negative value in | x| with
zero.

X = [-2, -1, 1]
x[x .< 0] .=0
julia>
3-element Vector{Int64}:
(0]
0
1

VARIABLES ON THE LEFT-HAND SIDE OF =

Since both mutations and assignments rely on [=], it's essential to distinguish between in-place
operations and reassignments. In particular, the latter doesn't modify the original object, but
actually creates a new one.

We've already shown that placing slices on the left-hand side of [=] results in mutations. Now, let's
consider cases where an entire object like [ x |appears on the left-hand side. In these cases, we need to

be careful, as only [ . =] will result in a mutation, whereas [=] will perform a reassignment.

For example, suppose our goal is to modify all the elements of a vector . All the following
approaches determine that | x | holds the same values, but only the last two achieve this by mutating

[x]



X = [1, 2, 3]

X =x .* 10

julia>

3-element Vector{Int64}:
10

20

30

X = [1, 2, 3]

X .= x L% 10

julia>

3-element Vector{Int64}:
10

20

30

X = [1, 2, 3]

x[:] =x .* 10

julia>

3-element Vector{Int64}:
10

20

30

Notice that the difference between approaches could go unnoticed, as they all yield the same
outcome. However, we'll see in Part Il of the website that these approaches can entail big differences
in performance. In particular, reusing the original memory address of [x] tends to be more performant
than creating a new memory address for .

This difference will also manifest when using the macro for a seamless broadcasting. Depending
on where is placed relative to[=], we could end up with an assignment or a mutation.

X = [1, 2, 3]

X .= x .* 10

julia>

3-element Vector{Int64}:
10

20

30




X = [1, 2, 3]
@. x =x * 10
julia>
3-element Vector{Int64}:
10
20
30
X = [1, 2, 3]
X =@ x * 10
julia>
3-element Vector{Int64}:
10
20
30

VIEW ALIASES ON THE LEFT-HAND SIDE OF =

The previous case exemplified a scenario where the ultimate outcome is the same, regardless of

whether we employ [=] or [ .=] Instead, the results will differ when view aliases are on the left-hand
side. View aliases allow us to work with [slice = view(x, <indices>)| rather than [x[<indices>]|

Defining view aliases is convenient when we need to perform various operations over the same slice.

This avoids repeatedly referencing the slice via [x[<indices>]| which would be inefficient, error-

prone, and tedious.

In these cases, it's only when we use [ .=]that we'll perform a mutation.

X = [1, 2, 3]

slice = view(x, x .= 2)

slice .= slice .* 10 # same as 'x[x .= 2] = x[x .=z 2] .* 10'
julia>
3-element Vector{Int64}:

1

20

30
X = [1, 2, 3]
slice = view(x, x .= 2)
slice = slice .* 10 # this does NOT modify ‘x'
julia>
3-element Vector{Int64}:

1

2

3




There are a few additional incorrect uses that can emerge with view aliases. To demonstrate them,
let's consider replacing all negative values in | x| with zero. Below, only the first approach achieves the
desired outcome.

X = [-2, -1, 1]
slice = view(x, x .< 0)
slice .= 0

julia>

3-element Vector{Int64}:

0

0

1
X = [-2, -1, 1]

slice = x[x .< 0] # 'slice' is a copy

slice .= 0 # this does NOT modify ‘x'

julia>

3-element Vector{Int64}:
-2
-1
1

x
1

[-2, -1, 1]

slice = view(x, x .< 0)
slice =0 # this creates a new object, it does NOT modify ’x'

julia>

3-element Vector{Int64}:
-2
-1
1
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INTRODUCTION

This section continues exploring approaches to mutating vectors. The emphasis is in particular on
in-place functions, defined as functions that mutate at least one of their arguments.

Many built-in functions in Julia have a corresponding in-place counterpart. These versions can be
easily identified by the symbol |I| appended to their names. In-place functions enable users to store
the output in one of the function's arguments, thereby avoiding the creation of a new object. They can
also be used to update the values of a variable directly. For example, given a vector [x], [sort(x)
returns a new vector with ordered elements, but without altering the original . In contrast, the in-

place version directly stores the result within [x] itself.

The benefits of in-place functions will become evident in Part Il, when discussing high-performance
computing. Essentially, by reusing existing objects, in-place functions eliminate the overhead
associated with creating new objects.

IN-PLACE FUNCTIONS

In-place functions, also known as mutating functions, are characterized by their ability to modify at
least one of their arguments. For example, given a vector , the following function |foo(x)
constitutes an example of in-place function, as it modifies the content of [x].

y = [0,0]

function foo(x)
x[1] 1
end

julia>

2-element Vector{Int64}:
0

0

julia> [foo(y)| #it mutates 'y'
julia>

2-element Vector{Int64}:
1
0

Remark


https://alfaromartino.github.io/

While functions are capable of mutating values, they can't reassign
variables outside their scope. Any attempt to redefine a variable within
a function will be interpreted as the creation of a new local variable. '

The following code illustrates this behavior by redefining a function
argument and a global variable. The output reflects that in each
example treats the redefined as a new local variable, thus only

existing within [foo|'s scope.

function foo(x)
Xx =3
end

julia>
2
julia>

julia> #functions can't redefine variables globally, only|
mutate them
2

x = [1,2]

function foo()
x = [0,0]
end

julia>
2-element Vector{Int64}:
1

2

julia>

julia> #functions can't redefine variables globally, only|
mutate them
2-element Vector{Int64}:

1

2

BUILT-IN IN-PLACE FUNCTIONS

In Julia, many built-in functions that take vectors as arguments are available in two forms: a "standard"
version and an in-place version. To distinguish between them, Julia's developers follow a convention
that any function ending with [ ! | corresponds to an in-place function.

Remark



Appending [!]| to a function has no impact on the function's
behavior at all. It's simply a convention adopted by Julia's developers
to emphasize the mutable nature of the operation. Its purpose is to
alert users about the potential side effects of the function, thus
preventing unintended modifications of objects.

To illustrate these forms, let's start considering single-argument functions. In particular, we'll focus on
[sort] This arranges the elements of a vector in ascending order, with the option [rev=true
implementing a descending order. In its standard form, creates a new vector containing the
sorted elements, leaving the original vector [x] unchanged. In contrast, the in-place version [sort!(x)
updates the original vector | x | directly, overwriting its values with the sorted result.

x = [2, 1, 3]

sort(x)

y

julia>
3-element Vector{Int64}:
2

1

3

julia>
3-element Vector{Int64}:
1

2

3

x = [2, 1, 3]

sort!(x)

julia>
3-element Vector{Int64}:
1

2

3

Regarding multiple-argument functions, it's common to include an argument whose sole purpose is to

store outputs. For instance, given a function and a vector [x], the built-in function [map(foo, x)
has an in-place version [map! (foo, <output vector>, x)|.




X = [1, 2, 3]
output = map(a -> a"2, x)
julia>
3-element Vector{Int64}:
1
2
3
jutia>
3-element Vector{Int64}:
1
4
9
X = [1, 2, 3]
output = similar(x) # we initialize ‘output’
map!(a —> a*2, output, x) # we update ‘output’
julia>
3-element Vector{Int64}:
1
2
3
jutia>
3-element Vector{Int64}:
1
4
9

MUTATIONS VIA FOR-LOOPS

Recall that for-loops in Julia should always be wrapped in functions. This not only prevents issues with
variable scope, but is also key for performance, as we'll discuss in Part II.

In this context, the ability of functions to mutate their arguments is crucial. It determines that we can
initialize vectors with values, pass them to a function, and fill them through a function via for-
loops. The examples below illustrate this application.



x = [3,4,5]

function foo!(x)
for i in 1:2
x[i]l = 0
end
end

jutias
julia>

3-element Vector{Int64}:
0
0
5

x = Vector{Floatéu}(undef, 3) # initialize a vector with 3 elements

function foo!(x)
for i in eachindex(x)
x[i]l = 0
end
end

jutias
julia>

3-element Vector{Int64}:
0
0
0

FOOTNOTES

1 Strictly speaking, it's possible to reassign a variable by using the [global]keyword. However, its use is typically
discouraged, explaining why we won't cover it.
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The previous chapter equipped us with techniques for indexing and modifying vectors, expanding our
toolkit for working with data collections. This section builds on this knowledge to achieve several goals.

Firstly, we'll introduce additional types for collections, including dictionaries and named tuples.
Building on our grasp of tuples and vectors, we're now well-positioned to appreciate the unique
features of these alternatives and understand when they're more suitable.

Secondly, we'll expand on tools for streamlining code, which will become indispensable in your daily
use of Julia. These tools will make your coding experience smoother, by reducing boilerplate code and

improving syntax readability. One notable example is the use of pipes.

Thirdly, we'll introduce several standard functions for manipulating vectors, enabling you to perform
operations such as removing duplicates and sorting elements.

To conclude the chapter, we'll put into practice all the tools we've covered. This will be done
through a hypothetical scenario involving a YouTuber's earnings. This hands-on approach will
demonstrate how to apply the tools learned, helping you bridge the gap between theory and practice.
Furthermore, it'll lay the foundation for more advanced data analysis tools: by mastering the
application of fundamentals such as vector indexing, you'll be well-equipped to seamlessly transition

to typical data-analysis tools (e.g., the package).


https://alfaromartino.github.io/
https://en.wikipedia.org/wiki/Boilerplate_code

6b. Named Tuples and Dictionaries

Martin Alfaro
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INTRODUCTION

Our previous discussions on collections have centered around vectors and tuples. The current section
expands on the subject, offering a more comprehensive analysis of tuples and introducing two new
types of collections: named tuples and dictionaries.

In particular, we'll cover how to characterize collections through keys and values, methods for the
manipulation of collections, and approaches to transforming one collection into another.

KEYS AND VALUES

Most collections in Julia are characterized by keys. They serve as unique identifiers of their elements,

and have a corresponding value associated with each. ' For instance, the vector [x = [2, 4, 6]|has

the indices as its keys, and as their respective values.

Keys are more general than indices—they encompass all the possible identifiers of a collection's

elements (e.g., strings, numbers, or other objects). Instead, indices exclusively employ integers as
identifiers.

To identify the keys and values of a collection, Julia offers the functions [keys| and |values| The

following code snippets demonstrate their usage based on vectors and tuples, whose keys are

represented by indices. Note that neither [keys| nor [values| return a vector, requiring the |[collect

function for this purpose.

X [4, 5, 6]

julia> [collect(keys(x))]
3-element Vector{Int64}
1

2

3

julia> [collect(values(x))]|
3-element Vector{Int64}

4

5

6



https://alfaromartino.github.io/

some_pair = Pair("a", 1) # equivalent

julia> [collect(keys(x)) |
lla” => 1

julia> [collect(values(x)) |
1

THE TYPE [ PAIR]

Collections of key-value pairs in Julia are represented by the type [Pair{<key type>, <value type>}|
Although we won't directly work with objects of this type, they form the basis for constructing other
collections such as dictionaries and named tuples.

A key-value pair can be created by using the operator as in [<key> => <value>| For instance,

represents a pair, where [a] is its key and [1] its corresponding value. In addition, we can
create pairs through the function |Pair(<key>, <value>)| making equivalent to the

previous example. Finally, given a pair [x], its key can be accessed by either [x[1]] or [x.first] while
its value can be retrieved using[x[2] |or [ x.second|. All this is demonstrated below.

some_pair = ("a" => 1) # or simply 'some_pair = "a" => 1'
some_pair = Pair("a", 1) # equivalent

julia>

llall => 1

julia> [some_pair[1]|

a

julia> [some_pair.first|

a

some_pair = ("a" => 1) # or simply 'some_pair = "a" => 1'
some_pair = Pair("a", 1) # equivalent

julio>

llall => 1

julia> [some_pair[2]|
1

julia> [some_pair.second|
1

THE TYPE [SVgOL]

The type used to represent keys can vary depending on the collection. An important type used as a
key is [Symbol], which provides an efficient way to represent string-based keys. A symbol labeled [x] is
denoted [ :x], and can be created from strings using the function [Symbol(<some string>)]. 2




x = (a=U, b=5, c=6)

julia>

julia> [vector_symbols]
3-element Vector{Symbol}:
a
b
:C

NAMED TUPLES

Warning!

Tuples and named tuples should only be used for small collections.
Using them for large collections can lead to slow operations or directly
result in a fatal error (the so-called stack overflow). Arrays remain the
preferred choice for large collections.

Defining what constitutes small is challenging, and unfortunately there's
no definitive answer. We can only indicate that collections with fewer
than 10 elements are undoubtedly small, while those exceeding 100
elements violate the definition.

Named tuples share several similarities with regular tuples, including their immutability. However,
they also exhibit some notable differences. One of them is that the keys of named tuples are
objects of type in contrast to the numerical indices used for regular tuples.

Named tuples also differ syntactically, requiring being enclosed in parentheses —omitting them is
not possible, unlike with regular tuples. Furthermore, when creating a named tuple with a single
element, the notation requires either a trailing comma |, | after the element (similar to regular tuples)
or a leading semicolon[; | before the element. 3

To construct a named tuple, each element must be specified in the format | <key> = <value>| such as

[a = 10] Alternatively, you can use a pair [<key with Symbol type> => <value>] as in[:a => 10],

Once a named tuple [nt]is created, you can access its element [a] by using either [nt[:a]]or[nt.a],

The following code snippets illustrate all this.




# all 'nt' are equivalent
nt = ( a=10, b=20)
nt = (; a=10, b=20)

nt = ( :a=>10, :b => 10)
nt = (; :a =>10, :b => 10)

julia>

(a =10, b = 20)

julia>

10

julia> #alternative way to access 'a’
10

# all 'nt' are equivalent
nt = ( a=10,)
nt = (; a=10 )

nt = ( :a=>10,)
nt ta => 10 )

]
~

#not 'nt (a = 160)' ~-> this is interpreted as 'nt = a = 10'
#not 'nt = (:a => 10)' —-> this is interpreted as a pair

julia>

(a =10, )

julia>

10

julia> #alternative way to access 'a’
10

)
Remark

To see the list of keys and values, we can employ the functions

and [vaues ).

nt = (a=10, b=20)

julia> [collect(keys(nt)) |
2-element Vector{Symbol}:
:a
b
julia>

(10, 20)

DISTINCTION BETWEEN THE CREATION OF TUPLES AND NAMED TUPLES




It's possible to create named tuples from individual variables. For instance, given variables |x = 10
and [y = 20] you can define[nt = (; x, y)] This creates a named tuple with keys [x]and [y], and

corresponding values[10]and [20]

The semicolon | ; | is crucial in this construction, as it distinguishes named tuples from regular tuples.

Omitting it, asin[nt = (x, y) | would resultin a regular tuple instead.

x = 10
y = 20

nt =( x, vy)
tup = (x, y)

julia>

(x =10, y = 20)

julia>

(10, 20)

x = 10

nt = ( x)
tup = (x, )
julia>
(x =10,)
julia>
(10,)

DICTIONARIES

Dictionaries are collections of key-value pairs, exhibiting three distinctive features:

o The keys of dictionaries can be any object: strings, numbers, and other objects are
possible.

» Dictionaries are mutable: you can modify, add, and remove elements.

» Dictionaries are unordered: keys don't have any order attached.

Dictionaries are created using the function [pict], with each argument consisting of a key-value pair

denoted by | <key> => <value>].




some_dict = Dict(3 => 10, 4 => 20)

julia>

Dict{Int64, Int64} with 2 entries:
4 => 20
3 => 10

julia>

10

diCt = Dict(uau => 10, ||b|| => 2@)

julia>
Dict{String, Int64} with 2 entries:
Hbll => 20
Hall = 10
julia>
10

some_dict = Dict(:a => 10, :b => 20)

julia>

Dict{Symbol, Int64} with 2 entries:
a => 10
‘b => 20

julia>

10

some_dict = Dict((1,1) => 10, (1,2) => 20)

julia>

Dict{Tuple{Int64, Int64}, Int64} with 2 entries:
(1, 2) => 20
(1, 1) => 10

julia>

10

Note that regular dictionaries are inherently unordered, meaning access to their elements doesn't
follow any pattern. The following example illustrates this, where a vector collects the keys of a
dictionary. *

some_dict = Dict(3 => 10, 4 => 20)

keys_from_dict = collect(keys(some_dict))

julia> |keys_from_dict]
2-element Vector{Int64}:
4

3




some_dict = Dict("a" => 10, "b" => 20)

keys_from_dict = collect(keys(some_dict))

julia> |keys_from_dict]
2-element Vector{String}:
llbll
llall

some_dict = Dict(:a => 10, :b => 20)

keys_from_dict = collect(keys(some_dict))

julia> [keys_from_dict|
2-element Vector{Symbol}:
1a
‘b

some_dict = Dict((1,1) => 10, (1,2) => 20)

keys_from_dict = collect(keys(some_dict))

julia> |keys_from_dict]

2-element Vector{Tuple{Int64, Int64}}:
(1, 2)

(1, 1)

CREATING TUPLES, NAMED TUPLES, AND DICTIONARIES

Tuples, named tuples, and dictionaries can be constructed from other collections, provided that the
source collection possesses a key-value structure. The following examples demonstrate how various
collections can be used to create dictionaries in particular.

vector = [10, 20] # or tupl = (10,20)

dict = Dict(pairs(vector))

julia>

Dict{Int64, Int64} with 2 entries:
2 => 20
1 =>10




keys_for_dict = [:a, :b]
values_for_dict = [10, 20]

dict = Dict(zip(keys_for_dict, values_for_dict))

julia>

Dict{Symbol, Int64} with 2 entries:
ra => 10
b => 20

(:a, :b)
(10, 20)

keys_for_dict
values_for_dict

dict = Dict(zip(keys_for_dict, values_for_dict))

julia>

Dict{Symbol, Int64} with 2 entries:
a => 10
b => 20

nt_for_dict = (a = 10, b = 20)

dict = Dict(pairs(nt_for_dict))

julia>

Dict{Symbol, Int64} with 2 entries:
ra => 10
b => 20

keys_for_dict (:a, :b)

values_for_dict (10, 20)
vector_keys_values = [(keys_for_dict[i],
eachindex(keys_for_dict)]

dict = Dict(vector_keys_values)

values_for_dict[i])

for

in

julia>

Dict{Symbol, Int64} with 2 entries:
ra => 10
b => 20

Likewise, we can define a tuple from other collections, as shown below.



10
b =20

[s7]
1

tup = (a, b)

julia>

(10, 20)

values_for_tup = [10, 20]

tup = (values_for_tup... ,)

julia>

(10, 20)

values_for_tup = [10, 20]

tup = Tuple(values_for_tup)

julia>

(10, 20)

Finally, named tuples can be constructed from other collections.

)}
1
=
(o]

julia>

(a =10, b = 20)

[:a, :b]
[10, 20]

keys_for_nt
values_for_nt

nt = (; zip(keys_for_nt, values_for_nt)...)

julia>

(a =10, b = 20)




keys_for_nt = [:a, :bl
values_for_nt [10, 20]

nt = NamedTuple(zip(keys_for_nt, values_for_nt))

julia>

(a =10, b = 20)

keys_for_nt = (:a, :b)
values_for_nt (10, 20)

nt = NamedTuple(zip(keys_for_nt, values_for_nt))

julia>

(a = 10, b = 20)

keys_for_nt [:a, :b]
values_for_nt [10, 20]
vector_keys_values = [(keys_for_nt[i], values_for_nt[i]) for i in eachindex(keys_for_nt)]

nt = NamedTuple(vector_keys_values)

julia>

(a = 10, b = 20)

dict = Dict(:a => 10, :b => 20)

nt = NamedTuple(vector_keys_values)

julia>

(a = 10, b = 20)

DESTRUCTURING TUPLES AND NAMED TUPLES

Previously, we've demonstrated how to create a tuple and a named tuple from variables. Next, we
show that the reverse operation is also possible, where values are extracted from a tuple or named
tuple and assigned to individual variables. This process is known as destructuring, and allows
users to "unpack" the values of a collection into separate variables.

Destructuring involves the assignment operator [=], with a tuple or named tuple on the left-hand side.
The key difference between them lies in their compatibility with other collections: named tuples on the
left-hand side require a matching named tuple, whereas tuples can be paired with a variety of
collection types on the right-hand side. We illustrate each case below.



DESTRUCTURING COLLECTIONS THROUGH TUPLES

Given a collection with two elements, destructuring enables the user to create variables [x | and
[y ]with the values of [ list]. This is implemented by the syntax [<tuple> = <collection>] such as[x,y
= list] The following examples illustrate this operation, according to different objects taken as [Llist

list = [3,4]
x,y = list
julia>

3

julia>

4

list = 3:4
x,y = list
julia>

3

julia>

4

list = (3,4)
x,y = list
julia>

3

julia>

4
list = (a =3, b = 4)
x,y = list
julia>

3

julia>

4

In addition to destructuring all elements in [list], you can choose to destructure only a subset of
elements. The assignment is then performed in sequential order, following the collection's inherent
order, without the possibility of skipping any specific value. To explicitly disregard a value, it's common
to use the special variable name [_] as a placeholder. Note that this is merely a convention, without
any impact on execution.



For illustration purposes, we'll use a vector as an example of [List], but the same principle applies to
any object.

list = [3,4,5]
(x,) = list

julia>
3

list = [3,4,5]

X,V = list

julia>

3

julia>

4

list = [3,4,5]

iz = list # _ skips the assignment of that value

julia>

5

list = [3,4,5]

X,_,z = list # _ skips the assignment of that value

julia>
3
julia>

5

DESTRUCTURING WITH NAMED TUPLES ON BOTH SIDES

An alternative to standard tuples for destructuring is given by employing named tuples on the left-

hand side. This approach lets you extract values by directly referencing field names, rather than
relying on their positional order. Its key advantage is that variables can be assigned values in any
order, provided their names correspond to the field names in the named tuple.



nt = (; keyl = 10, key2 = 20, key3 = 30)
(; key2, keyl) = nt # keys in any order
julia>
10
julia>
30
nt = (; keyl = 10, key2 = 20, key3 = 30)
(; key3) = nt # only one key
julia>
30

)

Remark

When destructuring with a tuple on the left-hand side and a named
tuple on the right-hand side, keep in mind that tuple assignments are
strictly positional. This means that variable names don't influence the
assignment, which exclusively happens based on the position of values.
As a result, the assignment process is unaffected by whether the
variable names match the keys of the named tuple.

nt = (; keyl =

key2, keyl
POSITION
(key2, keyl)

10, key2 = 20, key3 = 30)

= nt # variables defined according to

= nt # alternative notation

julia>

10

julia>

20

nt = (; keyl =

(; key2, keyl)
KEY
; key2, keyl

10, key2 = 20, key3 = 30)

= nt # variables defined according to

nt # alternative notation

julia>

10

julia>

20

The same caveat applies to single-variable assignments.




nt = (; keyl = 10, key2 = 20)

(key2,) = nt # variable defined according to
POSITION

julia>

10

nt

(; keyl = 10, key2 = 20)

(; key2)

julia>

20

nt # variable defined according to KEY

APPLICATIONS OF DESTRUCTURING

Destructuring named tuples is especially useful in models that involve a repeated use of numerous

parameters. By storing all these parameters in a named tuple, you can pass a single argument to
functions. Then, by destructuring the named tuple, you can extract the needed parameters at the
beginning of the function body.

B =3
6§ = U
€=5

# function 'foo' only uses 'B' and 'S’
function foo(x, &, B)
x * & + exp(B) / B

end

julia> [foo(2, &, B)]
14.695

parameters_list = (; B = 3

# function 'foo' only uses 'B' and 'S’
function foo(x, parameters_list)

X * parameters_list.§ + exp(parameters_list.B) / parameters_list.p
end

julia> |foo(2, parameters_1list.f, parametersflist.6)|
14.695




parameters_list = (; B=3, § =4, € =5)

# function 'foo' only uses 'B' and 'S’
function foo(x, parameters_list)
(; B, 8) = parameters_list

x * & + exp(B) / B
end

julia> [foo(2, parameters_list) |
14.695

Another useful application of destructuring occurs when we need to retrieve multiple outputs of a
function. This enables you to store each result in a separate variable. Below, we illustrate this

application with a tuple and variables[x] [y] and [z].

function foo()

outl = 2
out2 = 3
out3 = 4

outl, out2, out3
end

X, ¥y, z = foo()

function foo()

outl = 2
out2 = 3
out3 = 4

[outl, out2, out3]
end

X, vy, z = foo()

Another typical application of destructuring is when we need only a subset of a function's outputs.
While both tuples and named tuples can be applied for this purpose, the former offers more flexibility
since they can be combined with various types of collections. Instead, named tuples are limited to
another named tuple as the function's output, further requiring prior knowledge of the output's field

names.

The following example demonstrates this functionality by extracting the first and third output of the

[foo | function.



function foo()

outl = 2
out2 = 3
out3 = 4

outl, out2, out3
end

X, _, z = foo)

function foo()

outl = 2
out2 = 3
out3 = 4

[outl, out2, out3]
end

X z = foo()

function foo()

outl = 2
out2 = 3
out3 = 4

(; outl, out2, out3)
end

(; outl, out3) = foo()

FOOTNOTES

T Not all collections map keys to values. For example, the type , which represents a group of unique unordered

elements, doesn't have keys.

2 also enables the creation of variables programmatically. For example, it can be employed for defining
new columns in the package [pataFrames ], which provides a table representation of data.

3-The semicolon notation |Z| may seem odd, but it actually comes from the syntax for keyword arguments in
functions.

% The package [orderedCollections]addresses this, by offering a special dictionary called[Orderedbict]. It behaves

similarly to regular dictionaries, including their syntax, but endows the dictionary with an order.
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INTRODUCTION

This section introduces two approaches to computing outputs that involve multiple intermediate
steps. First, we introduce the so-called let blocks, which create a new scope that returns the last line
as its output. Let blocks offer a concise way to wrap a sequence of operations, making them similar to
functions but with less syntactic clutter. They also help maintain a tidy namespace, as all intermediate
variables will be local and therefore inaccessible outside the block.

The second approach is based on pipes, which chain a series of operations and return the final result
as its output. As the built-in pipe can become unwieldy beyond single-argument functions, we also
present an alternative based on the package.

LET BLOCKS

Let blocks are particularly helpful when we need to perform a series of operations, but only care about
the ultimate result. To illustrate their utility, suppose we want to compute the rounded logarithm of
[a]s absolute value, formally expressed as round (In (|a|)).

In Julia, this operation can be implemented using the expression |round(log(abs(a)))| where

returns the nearest integer to [a]. However, the readability of this expression is less than
ideal due to the multiple parentheses, with the issue potentially exacerbated if variables and functions
had long names.

To improve clarity, we could break the whole operation into multiple smaller steps: /) compute the
absolute value of [a], i) compute the logarithm of the result, and jii) round the resulting output. An
easy way to implement this is to create three intermediate variables to store the output in each step.
Nonetheless, this approach would clutter our namespace and potentially obscure the nested nature of
the operations.

A more elegant solution is to introduce a let-block, which resembles functions in several respects.

This construct creates a new scope delimited by the [let| and |end| keywords, enabling multiple

calculations to be performed within it. The result of the last calculation is then returned as the output
of the let-block. Like functions, let-blocks also allow arguments to be passed by specifying them after

the keyword.

To highlight the benefits of let-blocks, the following examples compare various approaches to

computing | round(log(abs(a))) |



https://alfaromartino.github.io/

-2

[«7]
1

output = round(log(abs(a)))

jutia>
1.0

julia>
julia>
4

a = -2

templ = abs(a)
temp2 = log(templ)
output = round(temp2)

julia>

1.0

a = =2

output = let b = a # 'b' is a local variable having the value of 'a’
templ = abs(b)
temp2 = log(templ)
round(temp2)

end

jutias

1.0

julia> #local to let-block
ERROR: UndefVarError: “templ’ not defined

julia> #local to let-block

ERROR: UndefVarError: “temp2’ not defined

a = =2

output = let a = a # the 'a' on the left of '=' defines a local variable
templ = abs(a)
temp2 = log(templ)
round(temp2)

end

jutias

1.0

julia> #local to let-block
ERROR: UndefVarError: “templ’ not defined

julia> #local to let-block

ERROR: UndefVarError: “temp2® not defined

[ Let Blocks Can Mutate Variables




Let blocks behave like functions regarding assignments and mutation.
This means that you can mutate their arguments, but can't reassign
variables.

x = [2,2,2]

output = let x = x
x[1] =0
end

julia>
3-element Vector{Int64}:
0

julia>

3-element Vector{Int64}:
2

2

2

Since mutations are possible within let-blocks, exercise caution to
prevent unintended side effects in the global scope.

PIPES

Pipes provide an alternative to let-blocks for operations with multiple intermediate steps. Unlike let-
blocks, they're specifically designed to chain operations together, with each step taking the output of
the previous step as its input. These steps are separated through the keyword.

Pipes are particularly well-suited for sequential applications of single-argument functions. To illustrate
this, let's revisit the example presented above for let blocks.

a = =2

output = round(log(abs(a)))

jutis>

1.0




a = -2

output = a |> abs |> log |> round
julia>
1.0

Let Blocks and Pipes For Long Names

Both approaches facilitate the creation of temporary aliases for
variables with lengthy names. In this way, users can assign meaningful
names to variables, while preserving code readability.

variable_with_a_long_name = 2

output = variable_with_a_long_name -
log(variable_with_a_long_name) / abs(variable_with_a_long_name)

julia>

1.6534264097200273

variable_with_a_long_name = 2

temp = variable_with_a_long_name
output = temp - log(temp) / abs(temp)

jutie>

1.6534264097200273

variable_with_a_long_name = 2

output = variable_with_a_long_name |[>
a —> a - log(a) / abs(a)

juties

1.6534264097200273

variable_with_a_long_name = 2

output = let x = variable_with_a_long_name
x = log(x) / abs(x)
end

jutie>

1.6534264097200273

BROADCASTING PIPES




Just like any other operator, pipes can be broadcasted by prefixing them with a dot [ .]. Thus,
indicates that the subsequent operation must be applied element-wise to the preceding output. For

example, the expression is equivalent to [abs. (x) |

To demonstrate its use, suppose we want to transform by taking the logarithm of its absolute
values, and then sum the results.

[-1,2,3]

x
1l

output = sum(log.(abs.(x)))

jutie>

1.791759469228055

X = [-1,2,3]
templ = abs.(x)
temp2 = log.(templ)

output = sum(temp2)

jutia>

1.791759469228055

x
1l

[-1,2,3]

output = x .|> abs .|> log |> sum

jutie>

1.791759469228055

PIPES WITH MORE COMPLEX OPERATIONS

Our examples of pipes so far have followed a simple pattern, with each step consisting of a single-

argument function. However, pipes applied in the current form preclude their application to multiple-
argument functions or even operations. For example, it prevents the incorporation of expressions like

[foo(x,y)|or|2 * x|

To incorporate such cases, we can combine pipes with anonymous functions. In this way, the user
can specify how the output of the previous step is incorporated into the subsequent operation. As
shown below, the technique greatly expands the utility of pipes.

a = =2

output = round(2 * abs(a))




a = =2

templ = abs(a)
temp2 = 2 * templ
output = round(temp2)

a = -2

output = a |> abs |> (x => 2 * x) |> round

#equivalent and more readable

output = a |>
abs |>
X => 2 % X |>
round

PACKAGE PIPE

Combining pipes and anonymous functions can result in cumbersome code, defeating the very own

purpose of using pipes to write clean and readable code.

The package provides a convenient solution, eliminating the need for anonymous functions. By
prefixing the operation chain with the macro, you can reference the output of the previous
step by the symbol |;| Furthermore, for simple operations that don't require anonymous functions,
and therefore don't need[_], has the same syntax as built-in pipes.

To demonstrate its use, we revisit the last example.

a = -2

output = a |> abs |> (x => 2 * x) |> round

#equivalent and more readable

output = a | >
abs | >
X => 2 * X |>
round

using Pipe
a=-2

output = @pipe a |> abs [> 2 * _ |> round

#equivalent and more readable

output = @pipe a |>
abs | >
2 * | >




FUNCTION COMPOSITION (OPTIONAL)

An alternative approach to nest functions is through the composition operator [ ]. This symbol can be
inserted by tab completion through [\circ], and its functionality is the same as in Mathematics.

Specifically, for some functions[f]and [g], [(f = g)(x)]is equivalent to [f(g(x)) ]

The operator [ = | can be considered as an alternative to piping, as it provides the same output as[x [>

f |> g|. Moreover, |Z| is also available as a function, where | °(f,g)(x) |is equivalent to | (f o g)(x)|

The following examples demonstrate its use.

# all ‘output' are equivalent

output = log(abs(a))
output = a |> abs |> log
output = (log ° abs)(a)
output = o(log, abs)(a)

jutia>

0.0

a =2
outer(a) = a + 2
inner(a) = a / 2

# all ‘output’' are equivalent

output = (a / 2) +2

output = outer(inner(a))
output = a |[> inner |> outer
output = (outer o inner)(a)
output = o(outer, inner)(a)
julia>

3.0

The resulting function of the function composition can be broadcasted. The notation for implementing
this is easier to understand by thinking of compositions as a new function h := f o g. This entails that
h(z):=(fog)(x) and therefore h(z):=(fog)(z)= f[g(z)]. Considering this, broadcasting
would require[h. (x) |, which is equivalent to [ (f = g).(x)]or[*(f,g).(X)].




X = [1, 2, 3]

# all ‘output' are equivalent

output = log.(abs.(x))
output = x .|> abs .|> log
output = (log o abs).(x)
output = o(log, abs).(x)

julia>

3-element Vector{Float64}:
0.0

0.6931471805599453
1.0986122886681098

X = [1, 2, 3]
outer(a) = a + 2
inner(a) = a / 2

# all ‘output' are equivalent

output = (x ./ 2) .+ 2

output = outer.(inner.(x))
output = x .|> inner .|> outer
output = (outer o inner).(x)
output = o(outer, inner).(x)
julia>

3-element Vector{Float64}:

2.5

3.0

3.5

Lastly, we can broadcast the composition operator E itself, allowing us to apply multiple functions to
the same object. For instance, the following example ensures that each function takes the absolute
value of its argument.



a = -1

inners = abs
outers = [log, sqrtl]
compositions = outers .o inners

# all ‘output' are equivalent
output = [log(abs(a)), sqrt(abs(a))]
output = [foo(a) for foo in compositions]

julia> [compositions|

2-element Vector{ComposedFunction{0, typeof(abs)} where 0}:
log o abs
sqrt o abs

julia»
2-element Vector{Float64}:
0.0

1.0
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INTRODUCTION

This section provides an overview of essential functions for manipulating vectors, including sorting,
identifying unique elements, counting occurrences, and ranking data. Our ultimate goal is to apply
these functions in a practical context, which we'll do in the next section.

SORTING VECTORS

The function allows the user to arrange elements in a specific order. By default, it sorts
elements in ascending order, but this can be easily reversed to a descending order by setting the

keyword argument [rev = true]. The function comes in two variants: [sort], which returns a new
sorted copy, and the in-place version [sort ], which directly updates the vector.

SORT (ASCENDING)
[0, 5, 3, 2]

X

y = sort(x)

julia>
4-element Vector{Int64}:
2

3
4
5

SORT (DESCENDING)
x = [4, 5, 3, 2]

y = sort(x, rev=true)

julia>

4-element Vector{Int64}:

5
4
3
2




SORT!

x = [4, 5, 3, 2]

sort!(x)

julia>
4-element Vector{Int64}:
2

3
4
5

Both and allow the sorting order to be dictated by transformations of [x]
Specifically, given a function and leveraging the keyword argument [by], the sorted order can be

determined by the values of [foo(x) | We demonstrate this below through the function [sort].

SORT - ABSOLUTE

[4, -5, 3]

X

3-element Vector{Int64}:
4
5
3

julia>

3-element Vector{Int64}:
3
4
-5

y = sort(x, by = abs) # 'abs' computes the absolute value
julia>

SORT - QUADRATIC

3-element Vector{Int64}:
16

25

9

julia>

3-element Vector{Int64}:
3
4
-5

X = [d, -5, 3]

foo(a) = a"2

y = sort(x, by = foo) # same as sort(x, by = x -> x"2)
julia>




SORT - NEGATIVE

X = [4, -5, 3]
foo(a) = -a
y = sort(x, by = foo) # same as sort(x, by = x —=> -x)

julia>
3-element Vector{Int64}:
-4
5
-3

julia>

3-element Vector{Int64}:
4
3
-5

RETRIEVING INDICES OF SORTED ELEMENTS

While returns the ordered values of the vectors, you may also be interested in the indices of the
sorted elements. This functionality is provided by the function [sortperm], which returns the indices of
[x]that would result in[sort(x) ] In other words, [x[sortperm(x)] == sort(x)]is true.

EXAMPLE 1

X

[1, 2, 3, 4]

sort_index = sortperm(x)

julia>
4-element Vector{Int64}:
1

2
3
4

EXAMPLE 2

X

[3, 4, 5, 6]

sort_index = sortperm(x)

julia>
4-element Vector{Int64}:
1

2
3
4




EXAMPLE 3

X

[1, 3, 4, 2]

sort_index = sortperm(x)

jutia>

4-element Vector{Int64}:

1
4
2
3

Analyzing the examples, we can see that the elements in the first two examples are already in
ascending order. As a result, returns the trivial permutation[[1, 2, 3, 41} In contrast, the
last example features an unordered vector [x = [1, 3, 4, 2]| Thus, the resulting vector|[1, 4, 2,

3]] indicates that the smallest element is at index 1, the second smallest is at index 4, the third
smallest is at index 2, and the largest at index 3.

Similar to|sort|,|sortperm|also allows retrieving the indices in descending order. This requires setting

the keyword argument to [true].

EXAMPLE 1

X

[9, 3, 2, 1]

sort_index = sortperm(x, rev=true)

julia>
4-element Vector{Int64}:
1

2
3
4

EXAMPLE 2

X

[9, 5, 3, 1]

sort_index = sortperm(x, rev=true)

julia>
4-element Vector{Int64}:
1

2
3
4




EXAMPLE 3

X

[9, 3, 5, 1]

sort_index = sortperm(x, rev=true)

jutias

4-element Vector{Int64}:

1
3
2
4

Finally, also supports the keyword argument [by]. This allows users to define a custom
transformation, which serves as the sorting criterion for the indices provided.

SORT - ABSOLUTE

X = [d, -5, 3]
value = sort(x, by = abs) # 'abs' computes the absolute value
index = sortperm(x, by = abs)

julia>
3-element Vector{Int64}:
4

5

3

julia>

3-element Vector{Int64}:
3
4
-5

julia>
3-element Vector{Int64}:
3
1
2




SORT - QUADRATIC

X = [4, -5, 3]
foo(a) = a"2
value = sort(x, by = foo) # same as sort(x, by = x -> x"2)
index = sortperm(x, by = foo)
julia>
3-element Vector{Int64}:

16

25

9

julia>

3-element Vector{Int64}:
3
4
-5

julia>

3-element Vector{Int64}:
3

1

2

SORT - NEGATIVE

X = [4, -5, 3]

foo(a) = -a

value = sort(x, by = foo) # same as sort(x, by = x —=> -x)
index = sortperm(x, by = foo)

julia>
3-element Vector{Int64}:
-4
5
-3

julia>

3-element Vector{Int64}:
4
3
-5

julia>

3-element Vector{Int64}:
1

3

2

AN EXAMPLE

One common application of is to reorder a variable based on the values of another
variable. For example, suppose we want to assess the daily failures of a machine. Focusing on the first

three days of the month, the following code snippet ranks these days by their corresponding failure
counts.



DAYS SORTED BY LOWEST NUMBER OF FAILURES

days = ["one", "two", "three"]
failures = [8, 2, u]
index = sortperm(failures)
days_by_failures = days[index] # days sorted by lowest failures
julia>
3-element Vector{Int64}:
2
3
1

julia> |days_by_earnings|
3-element Vector{String}:
"two"
"three"
"one"

REMOVING DUPLICATES

The function eliminates duplicates from a vector, returning a vector containing each element
only once. The function comes in two variants, with providing a new copy, and the in-place

version directly updating the original vector.

UNIQUE
[2, 2, 3, 4]

X

y = unique(x) # returns a new vector

julia>
4-element Vector{Int64}:
2

2

3

4

julia>

3-element Vector{Int64}:
2

3

4




UNIQUE!
x = [2, 2, 3, 4]

unique! (x) # mutates 'x'

julia>

3-element Vector{Int64}:
2

3

4

The [statsBase] package also offers a related function called [countmap . This enumerates the number

of times each element shows up in a vector. Formally, it returns a dictionary, where the unique
elements serve as keys, and their corresponding values represent the number of occurrences of that
element.

As the keys in the dictionary are unsorted by design, you must apply the function to the result if
you prefer sorted keys. Note that the application of [sort] will automatically transform an ordinary

dictionary into an object with type[Ordereddict .

UNSORTED COUNT
using StatsBase
X = [6, 6, 0, 5]
y = countmap(x) # Dict with ‘element => occurrences’
elements = collect(keys(y))
occurrences = collect(values(y))
julia>
Dict{Int64, Int64} with 3 entries:
0 =1
5=>1
6 => 2

julias

3-element Vector{Int64}:

0
5
6
julia>
3-element Vector{Int64}:
1
1

2




SORTED COUNT

using StatsBase
X = [6, 6, 0, 5]

y = sort(countmap(x)) # OrderedDict with ‘element => occurrences’

elements collect(keys(y))
occurrences = collect(values(y))

julia>

OrderedCollections.OrderedDict{Int64, Int64} with 3 entries:
0 =1
5=>1
6 => 2

julie>

3-element Vector{Int64}:
(0]
5
6

julia> | occurrences

3-element Vector{Int64}:
1
1
2

ROUNDING NUMBERS

Julia provides standard functions to approximate numerical values to a specific precision:
. approximates the number to its nearest integer.

. approximates the number down to its nearest integer.

. approximates the number up to its nearest integer.

Below, we show that these functions are quite flexible. In particular, they allow the user to specify the

output's type (e.g., |Int64| or [Float64]), the number of decimals to be included through the keyword
argument [digits], and the significant digits.

ROUND

X = U456.175

round(x) # U456.0
round(x, digits=1) # 456.2
round(x, digits=2) # 456.18
round(Int, x) # 456
round(x, sigdigits=1) # 500.0
round(x, sigdigits=2) # 460.0




FLOOR

X = U56.175

floor(x) # 456.0

floor(x, digits=1) # 456.1

floor(x, digits=2) # 456.17

floor(Int, x) # 456

floor(x, sigdigits=1) # 400.0

floor(x, sigdigits=2) # 450.0

CEIL

X = U456.175

ceil(x) # 457.0

ceil(x, digits=1) # 456.2

ceil(x, digits=2) # 456.18

ceil(Int, x) # 457

ceil(x, sigdigits=1) # 500.0

ceil(x, sigdigits=2) # 460.0
RANKINGS

Instead of sorting a vector, you may be interested in determining the rank position of each element.
The package offers two functions for this purpose, [competerank]and [ordinalrank]. The
main difference between them lies in how they handle identical elements: assigns the
same rank to identical elements, while assigns different ranks to these elements. Both
functions return a rank such that 1 corresponds to the lowest value. If you prefer to invert the ranking,
so that the highest value corresponds to a rank of 1, you can add the keyword argument [rev = true].

RANK (SAME RANK FOR TIES)

using StatsBase
x = [6, 6, 0, 5]

y = competerank(x)

julia>
4-element Vector{Int64}:
3

3
1
2




RANK (SAME RANK FOR TIES)

using StatsBase
x = [6, 6, 0, 5]

y = competerank(x, rev=true)

julia>
4-element Vector{Int64}:
1

1
4
3

RANK (UNIQUE POSITIONS)

using StatsBase
x = [6, 6, 6, 5]

y = ordinalrank(x)

julia>
4-element Vector{Int64}:
3

4
1
2

RANK (UNIQUE POSITIONS)

using StatsBase
x = [6, 6, 0, 5]

y = ordinalrank(x, rev=true)

julia>
4-element Vector{Int64}:
1

2
4
3

Do not confuse [ordinalrank |and [sortperm|

The function indicates the position of each value in the
sorted vector, while indicates the position of each value in the

unsorted vector.




'ORDINALRANK'

using StatsBase
x = [3, 1, 2]

y = ordinalrank(x)

julia>

3-element Vector{Int64}:
3

1

2

'SORTPERM'

using StatsBase
x = [3, 1, 2]

y = sortperm(x)

julia>

3-element Vector{Int64}:
2

3

1

EXTREMA (MAXIMUM AND MINIMUM)

We conclude by identifying extrema in a vector, along with their corresponding indices. The following
examples illustrate the functionality for the maximum, with analogous functions available for the
minimum.

VALUE OF MAXIMUM
x = [6, 6, 0, 5]

y = maximum(x)

julia>

6

INDEX OF MAXIMUM

x = [6, 6, 0, 5]
y = argmax(x)
julia>

1




VALUE AND INDEX
x = [6, 6, 0, 5]

y = findmax(x)

julia>

(6, 1)

Julia additionally provides the function [max | and [min|, which respectively return the maximum and
minimum of its arguments. These functions are particularly useful when applied in binary operations.

'MAX' FUNCTION

X =3
y =4

z = max(x,y)

julia>

4

FOOTNOTES

! The name originates from "sorting permutation". Although the name might seem somewhat opaque, it
arises because the operation returns the permutation of indices that would sort the original vector.
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INTRODUCTION

Through this section's illustration, we'll show the convenience of the following features:
1. Boolean indexing for working with subsets of the data
2. organizing code around functions
3. pipes to enhance code readability

4. use of views to modify subsets of the data

DESCRIBING THE SCENARIO

We'll explore the stats of Johnny's YouTube channel during a month. He has a median of 50,000 visits
per video, with a few viral videos exceeding 100,000 visits. The information at our disposal is:

e [nr_videos]: 30 (one per day).
o [visits] viewers per video (in thousands).

o [payrates| Dollars paid per video for 1,000 visits, ranging from $2 to $6. The fluctuation is
consistent with YouTube's payment model, which depends on a video's feature (e.g., content,
duration, retention).

The scenario is modeled by some mock data. The details of how data are generated are unimportant,
but they were added below for the sake of completeness. What matters is that the mock data creates
the following two variables.
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using StatsBase, Distributions
using Random; Random.seed!(1234)

function audience(nr_videos; median_target)
shape = log(4,5)
scale = median_target / 2"(1/shape)

visits = rand(Pareto(shape,scale), nr_videos)

return visits
end

nr_videos = 30

visits = audience(nr_videos, median_target = 50) # in thousands of visits
payrates = rand(2:6, nr_videos) # per thousands of visits

julia> # in thousands
30-element Vector{Float64}:
44,4608

57.2323

86.4182
36.5051

julia> # per thousand visits

30-element Vector{Int64}:
2
6

These two variables enable us to calculate the total payment per video.

earnings = visits .* payrates

julia>
30-element Vector{Float64}:
88.9215

343.394

259.254
146.02

SOME GENERAL INFORMATION

We begin by presenting some information about the per-view payments made by YouTube. We first
confirm that Johnny's payments ranged from $2 to $6. Moreover, using the [ countmaps | function from
the package, we conclude that Johnny has eight videos reaching the maximum payment of
$6.



range_payrates = unique(payrates) |> sort

julia> [range_payrates|
5-element Vector{Int64}:
2

o O bW

using StatsBase
occurrences_payrates = countmap(payrates) |> sort

julia> |occurrences_payrates|
OrderedDict{Int64, Int64} with 5 entries:

2 =>4
3=>5
4 => 8§
5=>5
6 => 8

We can also provide some insights into Johnny's most profitable videos. By applying the [sort
function and isolating the top 3 videos, we can obtain information on the highest earnings videos.
Moreover, we can apply the function to identify the indices of these videos, allowing us to
extract the payment per view and total visits associated with each one.

top_earnings = sort(earnings, rev=true)[1:3]

julia> |top_earnings]
3-element Vector{Float64}:
2708.57
1083.07
723.493

indices sortperm(earnings, rev=true)[1:3]

sorted_payrates = payrates[indices]

julia> [sorted_payrates]
3-element Vector{Int64}:
6

5

5




indices sortperm(earnings, rev=true)[1:3]

sorted_visits = visits[indices]

julia> [sorted_visits]
3-element Vector{Float64}:
451.428

216.615

144.699

BOOLEAN VARIABLES

In the following, we demonstrate how to use Boolean indexing to extract and characterize subsets of
data. Our focus will be on characterizing Johnny's viral videos, defined as those that have surpassed a
threshold of 100k visits. In particular, we'll determine the number of visits and revenue generated by
these videos.

To identify the viral videos, we'll create a vector, where identifies a viral video. This vector
allows us to selectively extract data points from other variables by using them as indices. For instance,
we use it below to compute the total visits and earnings derived from these viral videos.

# characterization of viral videos
viral_threshold 100

is_viral = (visits .= viral_threshold)
# stats
viral_nrvideos = sum(is_viral)

viral_visits sum(visits[is_virall)

viral_revenue = sum(earnings[is_virall])

julia> [viral_nrvideos]
6

julia> |viral_visits]
1243.63

julia> |viral_revenue|
6133.19

Boolean indexing also makes it possible to subset data satisfying multiple conditions. For instance, we
can use this technique to calculate the proportion of viral videos for which YouTube paid more than $3
per thousand visits.



# characterization
viral_threshold
payrates_above_avg

100

]
w

(visits .= viral_threshold)
is_viral_lucrative = (visits .z viral_threshold) .&& (payrates .> payrates_above_avg)

is_viral

v

# stat
proportion_viral_lucrative = sum(is_viral_lucrative) / sum(is_viral) * 100

julia> \proportionfviralflucrative\
83.3333

Rounding Outputs

You can express results with rounded numbers via the function [round]
By default, this returns the nearest integer expressed as a
number.

The function also offers additional specifications. For instance, you can
control the number of decimal places in the approximation using the
keyword argument. Furthermore, it's possible to represent the

number as an using the argument [Int].

rounded_proportion = round(proportion_viral_lucrative)

julia> |rounded_proportion|

83.0
rounded_proportion = round(proportion_viral_lucrative,
digits=1)

julia> | rounded_proportion
83.3

rounded_proportion = round(Int, proportion_viral_lucrative)

julia> | rounded_proportion|
83

FUNCTIONS TO REPRESENT TASKS

The approach employed so far allows for a rapid exploration of Johnny's viral videos. However, it falls
short in providing a systematic analysis that could be extended to other subsets of data. To overcome
this limitation, we can automate the process by defining a function.



Recall that a well-designed function should embody a specific task, implying that it must be
independent of its specific application. In our case, the goal is to subset data and extract specific
statistics, including the number of videos, visits, and revenue generated.

The function below implements this task taking three arguments: the raw data and
[payrates]) and a condition defining the subset ((condition ). By keeping the condition generic, we can
seamlessly apply the same analysis to various subsets of data. The example also showcases the
convenience of pipes to compute intermediate temporary steps, using it to retrieve the income earned
from a subset of videos.

#

function stats_subset(visits, payrates, condition)
nrvideos = sum(condition)
audience = sum(visits[condition])

earnings = visits .* payrates

revenue = sum(earnings[condition])

return (; nrvideos, audience, revenue)
end

using Pipe

function stats_subset(visits, payrates, condition)
nrvideos = sum(condition)
audience = sum(visits[condition])

revenue = @pipe (visits .* payrates) |> x —> sum(x[condition])

return (; nrvideos, audience, revenue)
end

using Pipe

function stats_subset(visits, payrates, condition)
nrvideos = sum(condition)
audience = sum(visits[condition])

revenue = @pipe (visits .* payrates) |> sum(_[condition])

return (; nrvideos, audience, revenue)
end

Below, we illustrate how the function enables effortlessly characterizing various subsets of data.



viral_threshold

100

is_viral = (visits .=z viral_threshold)
viral = stats_subset(visits, payrates, is_viral)
julia>

(nrvideos = 6, audience = 1243.63, revenue = 6133.19)

viral_threshold = 100
is_notviral
notviral

jutias

(nrvideos = 24, audience = 1169.13, revenue = 4971.02)

.1(is_viral) # '!' is negating a boolean value and we broadcast it
stats_subset(visits, payrates, is_notviral)

days_to_consider = (1, 10, 25) # days when the videos were posted
is_day in.(eachindex(visits), Ref(days_to_consider))

specific_days = stats_subset(visits, payrates, is_day)

julia> |specific_days|
(nrvideos = 3, audience = 118.547, revenue = 414.113)

MUTATING VARIABLES

Suppose that, seeking to enhance audience engagement, Johnny has decided to promote his videos
through advertising. His projections suggest that ads will boost viewership per video by 20%. However,
due to budget constraints, Johnny must choose between promoting either his non-viral videos or his
viral ones. To make an informed decision, Johnny decides to leverage the data at his disposal to
crunch some rough estimates. In particular, he'll base his decision on the earnings he would've earned
during last month if he had run targeted ads.

The computations require creating a modified copy of [visits], adjusting the audience data after
running the ads for the targeted videos. With this updated audience data, we can then apply the

previously defined |stats_subset | function to estimate the potential earnings. Comparing the results

in each tab, Johnny would conclude that promoting viral videos seems to be a more profitable
strategy.

# 'temp' modifies 'new_visits'

new_visits = copy(visits)

temp = @view new_visits[new_visits .z viral_threshold]
temp .= 1.2 .* temp

allvideos = trues(length(new_visits))

targetViral = stats_subset(new_visits, payrates, allvideos)

julia> |targetViral

(nrvideos = 30, audience = 2661.48, revenue = 12330.8)




# 'temp' modifies 'new_visits'

new_visits = copy(visits)

temp = @view new_visits[new_visits .< viral_threshold]
temp =1.2 .* temp

allvideos = trues(length(new_visits))

targetNonViral = stats_subset(new_visits, payrates, allvideos)

julia> [targetNonviral|

(nrvideos = 30, audience = 2646.58, revenue = 12098.4)

Be Careful with Misusing 'view'

Updating requires an in-place operation to mutate the parent
object. In our case, this was achieved via the broadcasted operator [.=].
Below, we state some implementations that fail to produce the desired
result.

new_visits = copy(visits)

temp = @view new_visits[new_visits .= viral_threshold]
temp .= temp .* 1.2

new_visits = visits # it creates an alias, it's a view of
the original object!!!

# 'temp' modifies 'visits' -> you lose the original info
temp = @view new_visits[new_visits .= viral_threshold]
temp .= temp .* 1.2

new_visits = copy(visits)

# wrong —> not using ‘temp .= temp .* 1.2°
temp = @view new_visits[new_visits .= viral_threshold]
temp = temp .* 1.2 # it creates a new variable 'temp', it

does not modify 'new_visits'

Use of "Let Blocks" To Avoid Bugs
The code above for "Target Viral" and "Target Non-Viral" refers to each

variable by an identical name. This increases the risk of accidentally
referring to a variable from a different scenario.

The likelihood of incurring this issue can be alleviated by employing "let
blocks". By defining their own scope, they help maintain a clean
namespace.




targetViral = let visits = visits, payrates = payrates,
threshold = viral_threshold
new_visits = copy(visits)

temp = @view new_visits[new_visits .z threshold]
temp .= 1.2 .* temp
allvideos = trues(length(new_visits))

stats_subset(new_visits, payrates, allvideos)
end

julia> |targetViral

(nrvideos = 30, audience = 2661.48, revenue = 12330.8)

targetNonViral = Tlet visits = visits, payrates = payrates,
threshold = viral_threshold
new_visits = copy(visits)

temp = @view new_visits[new_visits .< threshold]
temp .= 1.2 .* temp
allvideos = trues(length(new_visits))

stats_subset(new_visits, payrates, allvideos)
end

julia> |targetNonviral]
(nrvideos = 30, audience = 2646.58, revenue = 12098.4)

BROADCASTING OVER A LIST OF FUNCTIONS (OPTIONAL)

At the beginning of the analysis, we could've derived descriptive statistics to gain insights about

This can be accomplished by using the function from the [StatsBase

package. Despite this, the presentation aims to highlight that functions are first-class objects in Julia.

Johnny's videos.

This property entails that a function behaves just like any other variable, allowing the user to define a

list of functions and then apply them element-wise to a variable.

list_functions

stats_visits

= [sum, median, mean, maximum, minimum]

= [fun(visits) for fun in list_functions]

julia> |stats_visits]

2661.48
52.7884
88.716

541.714
27.7205

5-element Vector{Float64}:




By broadcasting the operation, we can also compute stats for multiple variables concurrently. For

instance, below we characterize |visits|and|earnings |simultaneously.

list_functions = [sum, median, mean, maximum, minimum]

stats_various = [fun.([visits, payrates]) for fun in list_functions]

julia> |stats_various|
5-element Vector{Vector{Float64}}:
[2661.48, 128.0]
[52.7884, 4.0]
[88.716, 4.26667]
[541.714, 6.0]
[27.7205, 2.0]

One major limitation of the current method is its inability to capture each statistic's name. To

overcome this, we can employ a named tuple, which we'll call [stats_visits| The approach enables

us to access stats through their respective names, such as [stats visits.mean| or

|stats_visits[:mean] |for the average value.

The implementation is based on the type [Symbol|. This converts strings into identifiers, which are
necessary to programmatically access a named tuple's keys.

[(Symbol(fun), fun(visits)) for fun in list_functions]
NamedTuple(vector_of_tuples)

vector_of_tuples
stats_visits

julia> |stats_visits]|
(sum = 2661.48, median = 52.7884, mean = 88.716, maximum = 541.714, minimum = 27.7205)

julia> [stats_visits.mean |
88.716

julia> [stats_visits[:median] |
52.7884




7a. Overview and Goals
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The first part of the website has laid the groundwork for working with Julia. This demanded
introducing fundamental data types, such as scalars, vectors, and tuples. Alongside these, we've
covered essential programming constructs, including functions, conditionals, and for-loops. While
these concepts may vary in syntax and usage across different programming languages, their
underlying principles remain universal.

In the second part of the website, we'll shift our attention to one of Julia's most distinctive strengths:
high-performance computing. When paired with its intuitive syntax and interactive nature, this
feature makes Julia an ideal choice for scientific applications.

The domain of high-performance computing is vast and complex. Moreover, each subject has
idiosyncratic features that make certain optimizations more or less relevant. Given this breadth, I've
made deliberate choices about what to include and exclude. The challenge lay in striking the right
balance between providing sufficient background knowledge for explaining a technique, while
avoiding unnecessary specificity.

Considering this inherent trade-off, I've chosen the subjects with the goal of equipping readers with
practical knowledge for optimizing code, without overwhelming them with excessive detail. In
particular, the primary focus will be on what | consider to be the essentials for performance in Julia:
type stability and reductions in memory allocations. The former in particular constitutes a
prerequisite for achieving high performance in Julia, making it necessary for any further optimization.

The discussion of high performance in Julia will lead us to consider its type system. Nonetheless, some
valuable concepts related to it have been left out. In particular, the concept of [struct], which allows
users to create their own custom objects, won't be covered. There are two reasons for this omission.
First, while important for project development, the subject can be bypassed when analyzing high
performance, without compromising its understanding. Second, the section included on types is
already long enough—adding more subjects could divert the reader's attention away from the primary
focus, which is learning high-performance techniques.
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7b. When To Optimize Code?

Martin Alfaro
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INTRODUCTION

Julia has been praised as solving the "two-language problem". This refers to the difficulty of finding a
language that's fast, but still easy to read and write. Although it's true that Julia has some advantages
relative to other languages, claims like this can be quite misleading for someone new to programming
—it wrongly suggests that Julia is the only language you'll need to learn, regardless of your specific
coding domain.

In reality, each programming language is designed with certain purposes in mind. Consequently, it's
quite likely that you'll need to learn multiple programming languages, even if your focus is narrow.
This is particularly true in data analysis, where a package implementing a specific task may only be
available in one language. |, for one, tend to use Julia as my main language for data analysis, but
complement it with libraries from R and Python when the task requires it. '

Getting the best performance in any language is also not immediate. It requires you to write code
appropriately, with implementations that tend to be software-specific and involve several trade-offs. 2
Overall, the claim that "Julia is fast" should be replaced by "Julia can be fast." Considering this, the
upcoming chapters aim to equip you with the essential tools to unlock Julia's performance capabilities.

WHEN SHOULD WE CARE ABOUT SPEED?

Achieving high performance often comes with trade-offs, and thus should never be the sole
consideration when writing code. Optimizing performance frequently means rewriting parts of your
script, which can reduce readability and make the code harder to maintain in the long run.
Additionally, implementing these improvements requires significant time and effort, including tasks
such as testing, identifying bottlenecks, and integrating third-party packages.

Considering this, you should assess your goals before embarking on any optimization efforts. Keep in
mind that most of YOUR time will be spent on writing, reading, and debugging code—reducing
the computer's execution time by a millisecond may not be worth the trade-off if it demands investing
hours. Moreover, even if speed is crucial for your project, you should prioritize which parts of the code
to optimize. Typically, only a few operations impact runtime critically, with the rest having a negligible
effect.

With these caveats in mind, the suggestions we'll present in the upcoming chapters serve a dual
purpose. Firstly, they represent essential rules for speed—not adhering to them would severely
undermine performance, thereby negating any advantages of using Julia. Secondly, several tips we'll
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consider have a minimal impact on code's readability, if any. In summary, the procedures to be
presented will help you unlock Julia's speed, without sacrificing code readability or entailing excessive
additional work.

FOOTNOTES

T Julia has the capacity of calling programs from other software such as R or Python. Python and R also have this
feature.

2 This explains the disparate results often seen in online benchmarks, where code can be written inefficiently in one
language and highly optimized in another. Moreover, since languages tend to excel at certain tasks, it's possible to
cherry-pick examples that make a particular language appear faster.
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INTRODUCTION

This section introduces standard tools for benchmarking code performance. Our website reports

results based on the |BenchmarkTools | package, which is currently the most mature and reliable option
in the Julia ecosystem. That said, the newer package has demonstrated notable
improvements in execution speed compared with |[BenchmarkTools| | recommend adopting
once it's achieved sufficient stability and adoption within the community.

To set the stage, we'll start by addressing some key points for interpreting benchmark results. We'll
also look at Julia's built-in macro, whose limitations explain why [BenchmarkTools]| and

should be used instead.

TIME METRICS

Julia uses the same time metrics described below, regardless of whether you use |BenchmarkTools | or
[Chairmarks]. For quick reference, these metrics can be accessed at any point in the left bar under
"Notation & Hotkeys".

Unit Acronym Measure in Seconds
Seconds 1
Milliseconds 103
Microseconds 1076
Nanoseconds 107°

Alongside execution times, each package also reports the amount of memory allocated on the heap,
typically referred to simply as allocations. These allocations can play a major role in overall
performance, and usually indicate suboptimal coding practices. As we'll explore in later sections,
monitoring allocations tends to be crucial for achieving high performance.

"TIME TO FIRST PLOT"
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The expression "Time to First Plot" refers to a side effect of how Julia operates, where the first
execution in any new session takes longer than subsequent ones. This latency isn't a bug. Rather, it's a
direct consequence of the language's design, which relies on a just-in-time (JIT) compiler: Julia compiles
the code for executing functions in their first run, translating them into highly optimized machine code
on the fly. This compilation process will be thoroughly covered in upcoming sections.

The first time you run any function, Julia generates low-level machine instructions to carry out the
function's operations. This process of translating human-readable code into machine-executable
instructions is called compilation. Unlike other programming languages, Julia relies on a just-in-time
(JIT) compiler, where this code is compiled on-the-fly when a function is first run. This compilation
process will be thoroughly covered in upcoming sections.

In each new session, this compilation penalty is incurred only once per function and set of argument
types. Once a function is compiled, its machine code is cached, making all subsequent calls faster. The
consequence is that the resulting overhead isn't a major hindrance for large projects, where startup
costs are quickly amortized. However, it does mean that Julia may not be the best option for quick
one-off analyses, such as running a simple regression or producing a quick exploratory plot.

The latency caused by this feature varies significantly across functions, making it difficult to generalize
its impact. While it may be imperceptible for simple functions like , it can be noticeable for
rendering a high-quality plot. Indeed, drawing a first plot during a session can take several seconds,
explaining the origin of the term "Time to First Plot".

Warning!
The Time-to-First-Plot issue has been significantly mitigated since | Julia

1.9], thanks to improvements in precompilation. Each subsequent
release is reducing this overhead even further.

TIME

Julia comes with a built-in macro called [@time], allowing you to get a quick sense of an operation's
execution time. The results provided by this macro, nonetheless, suffer from several limitations that
make it unsuitable for rigorous benchmarking.

First, a measurement based on just a single execution is often unreliable, as runtimes can fluctuate
significantly due to background processes on your computer. Additionally, if that run is a function's
first call, the measurement will include compilation overhead. The extra time Julia spends generating
machine code inflates the reported runtime, making it unrepresentative of subsequent calls.

While running multiple times can address these issues, its most significant flaw arises when
benchmarking functions. This is because mischaracterizes function arguments as global
variables. We'll show in upcoming sections that global variables have a marked detrimental effect on
performance. Consequently, the time reported doesn't accurately reflect how the function would
perform in practice.



The following example illustrates the use of [@time] highlighting the difference in execution time
between the first and subsequent runs.

x = 1:100
@time sum(x) # first run -> it incorporates compilation time
@time sum(x) # time without compilation time —> relevant for each subsequent run

0.002747 seconds (3.56 k allocations: 157.859 KiB, 99.36% compilation time)
0.000003 seconds (1 allocation: 16 bytes)

PACKAGE "BENCHMARKTOOLS"

A more reliable alternative for measuring execution time is provided by |BenchmarkTools| which
addresses the shortcomings of [@time|in several ways.

First, it reduces result variability by running operations multiple times and then computing summary
statistics. It also measures the execution time of functions correctly. To account for compilation
latency, the package discards the first run, ensuring that overhead isn't included in the reported
timing. Additionally, it's possible to handle function arguments correctly: by prefixing an argument
with the | $ | symbol, you can indicate that the variable shouldn't be treated as a global variable.

The package offers two macros, depending on the level of detail required: [@btime], which only reports
the minimum time, and |@benchmark |, which provides detailed statistics. Below, we demonstrate their

use.

using BenchmarkTools

x = 1:100
@btime sum($x) # provides minimum time only

2.314 ns (0 allocations: 0 bytes)

using BenchmarkTools

x = 1:100
@benchmark sum($x) # provides more statistics than ‘@btime’

In later sections, we'll exclusively benchmark functions. Therefore, you should always prefix each
function argument with [$]. Omitting [$]| will lead to inaccurate results, including incorrect reports
of memory allocations.

The following example demonstrates the consequence of excluding[$], where the runtimes reported
are higher than the actual runtime.



using BenchmarkTools
x = rand(160)

@btime sum(x)

14.465 ns (1 allocation: 16 bytes)

using BenchmarkTools
x = rand(160)

@btime sum($x)

6.546 ns (0 allocations: 0 bytes)

PACKAGE "CHAIRMARKS"

A new alternative for benchmarking code is the package. Its notation closely resembles
that of [BenchmarkTools], with the macros and providing a similar functionality to [@btime
and [@benchmark] respectively. The main benefit of is its speed, as it can be orders of

magnitude faster than |BenchmarkTools |.

As with |BenchmarkTools|, measuring the execution time of functions requires prepending function
arguments with [$].

using Chairmarks
x = rand(100)

display(@b sum($x)) # provides minimum time only

6.550 ns

using Chairmarks
x = rand(100)

display(@be sum($x)) # analogous to ‘@benchmark’ in BenchmarkTools

Benchmark: 3856 samples with 3661 evaluations
min 6.679 ns
median 6.815 ns
mean 6.785 ns
max 14.539 ns

REMARK ON RANDOM NUMBERS FOR BENCHMARKING




When we seek to compare the performance of different methods for a given operation, we must
ensure that our measurements aren’t skewed by variations in the input data. One way to do this is by
making sure that each approach is tested using the exact same set of numbers. This guarantees that any
differences in execution time can be attributed solely to the efficiency of the method itself, rather than
to a change in the inputs.

To achieve this, we can take advantage of random number generators that use a fixed "seed." A
random seed is simply an initial value that determines the entire sequence of numbers that will be
generated. By setting the same seed before each test, we can guarantee that the same deterministic
sequence of random numbers is produced when code is run.

Importantly, any arbitrary number can be used for the seed. The only requirement is that the same
number is utilized, so that you can replicate the exact same set of random numbers.

Random number generation is provided by the package [Random| Below, we demonstrate its use by
setting the seed before executing each operation, although any other number could have been
used.

using Random

Random.seed!(1234) # 1234 is an arbitrary number, use any number you want
x = rand(100)

Random.seed!(1234)
y = rand(100) # identical to 'x'

using Random

Random.seed!(1234) # 1234 is an arbitrary number, use any number you want
x = rand(100)

y = rand(100) # different from 'x’

To maintain a clear presentation throughout this website, code snippets will omit the lines that set the
random seed. While adding these code lines is essential for ensuring reproducibility, their inclusion in
every example would create unnecessary clutter. Below, we illustrate the code that will be displayed
throughout the website, along with the actual code executed.

using Random
Random.seed!(123)

rand(100)

x
1

y = sum(x)




# We omit the lines that seet the seed

x = rand(100)

sum(x)

<
1

BENCHMARKS IN PERSPECTIVE

When evaluating approaches for performing a task, execution times are often negligible, typically on
the order of nanoseconds. However, this should not lead us to believe that the choice of method has
no practical implications.

While operations in isolation may have an insignificant impact on a program's overall runtime, the
relevance of our benchmarks lies in scenarios where these operations are performed
repeatedly. This includes cases where the operation is called in a for-loop or in iterative procedures
(e.g., solving systems of equations or the maximization of a function). In these situations, small
differences in timing are amplified as they are replicated hundreds, thousands, or even millions of
times.

AN EXAMPLE

To illustrate this matter, let's consider a concrete example. Suppose we want to double each element
of a vector , and then calculate their sum. In the following, we'll compare two different approaches
to accomplish this task.

The first method will be based on [sum(2 .* x)] with [x] entering into the computation as a global
variable. As we'll discuss in later sections, this approach is relatively inefficient. A more performance

alternative is given by [sum(a -> 2 * a, x)|and passing |x|passed as a function argument. For the

purpose of this comparison, you only need to know that both method produces the same result, with
the first one being less performance. The runtime of each approach is as follows.

X = rand(100_000)

foo() = sum(2 .* x)

35.519 pus (5 allocations: 781.37 KiB)

= rand(100_000)

x
|

foo(x) = sum(a -> 2 * a, x)

6.393 us (0 allocations: 0 bytes)

The results reveal that the second approach achieves a significant speedup, taking less than 15% of
the slower approach. However, even the "slow" approach is extremely fast, taking less than 0.0001
seconds to execute.



This pattern will be a common theme in our benchmarks, where absolute execution times are often
negligible. In such cases, the relevance of our conclusions depends on the context in which the
operation is considered. If the operation is only performed once in isolation, readability should be the
primary consideration for choosing a method. On the other hand, if the operation is repeated multiple
times, small differences in performance might accumulate and become significant, making the faster
approach a more suitable choice.

To illustrate this point, let's take the functions from the previous example and call them within a for-
loop that runs 100,000 times. Since our sole goal is to repeat the operation, we don't need a
meaningful iteration variable. This is a well-established programming convention for so-called
throwaway variables: placeholders that exist only to satisfy the loop’s syntax, without their value
being used. It signals to other programmers that the variable can be safely ignored. In our example, E
will simply reflect that each iteration is performing exactly the same operation.

rand(100_000)
sum(2 .* x)

X
foo()

function replicate()
for _ in 1:100_000
foo()
end
end

5.697 s (500000 allocations: 74.52 GiB)

X = rand(100_000)
foo(x) sum(a => 2 * a, x)

function replicate(x)
for _ in 1:100_000
foo(x)
end

end

677.130 ms (0 allocations: 0 bytes)

The example starkly reveals the consequences of calling the function within a for-loop. The execution
time of the slow version now jumps to more than 20 seconds, while the fast version finishes in under
one second. The outcome highlights the importance of optimizing functions that will eventually be
executed repeatedly, as even minor improvements can yield a significant impact on overall
performance.
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INTRODUCTION

High performance in Julia depends critically on the notion of type stability. The definition of this
concept is relatively straightforward: a function is type-stable when the types of its expressions can be
inferred from the types of its arguments. When the property holds, Julia can specialize its computation
method, resulting in significant performance gains.

Despite its simplicity, type stability is subject to various nuances. In fact, a careful consideration of the
property requires a solid foundation in two key areas: Julia's type system and the inner workings of
functions. The current section equips you with the necessary knowledge to grasp the former,
deferring the internals of functions to the next section. The explanations will focus on the case of
scalars and vectors, leaving more complex objects for subsequent sections.

Before you continue, | recommend reviewing the basics of types introduced here.

Warning!
The subject is covered only to the extent necessary for

understanding type stability. Julia's type system is indeed quite vast,
and a comprehensive exploration would warrant a dedicated chapter.

BASICS OF TYPES

Variables in Julia are mere labels for objects, where objects in turn hold values with certain types. The
most common types for scalars are and [Int64] whose vector counterparts are
[Vector{Float64}|and [Vector{Int64} | Recall that is an alias for a one-dimensional array, so
that a type like |vector{Float64} |is equivalent to|Array{Float, 1} |

[Int]As an Alternative to

You'll notice that packages tend to use as the default type for
integers. The type is an alias that adapts to your CPU's
architecture. Since most modern computers are 64-bit systems, is

equivalent to [Int64] Nonetheless, becomes on 32-bit

systems.



https://alfaromartino.github.io/
http://localhost:8000/PAGES/02b_variables/#types

Julia's type system is organized in a hierarchical way. This feature allows for the definition of subsets
and supersets of types, which in the context of types are referred to as subtypes and supertypes. '
For instance, the type is a supertype that includes all possible types in Julia, thus occupying the
highest position in any type hierarchy. Another example of supertype is [Number |, which encompasses
all numeric types ((Float64 | |[Float32| [Int64], etc.).

Supertypes provide great flexibility for writing code. They enable the grouping of values to define
operations in common. For instance, defining [+|for the abstract type ensures its applicability
to all numeric types, regardless of whether they are integers, floats, or their numerical precision.

A special supertype known as will be instrumental for our examples. This construction is useful
for variables that can potentially hold values with different types. They're denoted by [Union{<typel>,
<type2>, ...}|, so that a variable with type [Union{Int64, Float64}] could be either an or
[Float64]. Note that, by definition, union types are always supertypes of their arguments.

)
Union of Types to Account for Missing Values

Unions of types emerge naturally in data analysis workflows, especially
when handling missing observations. In Julia, these values are
represented by the type [Missing] For instance, if we load a column
that contains both integers and empty entries, this is usually stored with
type [Vector{Union{Missing, Int64}} |

»

ABSTRACT AND CONCRETE TYPES

The hierarchical nature of types makes it possible to represent subtypes and supertypes as trees. Th
structure gives rise to the notions of abstract and concrete types.

An abstract type acts as a parent category, necessarily breaking down into subtypes. The type i
Julia is a prime example. In contrast, a concrete type represents an irreducible unit that therefor
lacks subtypes. Concrete types are considered final, in the sense that they can't be further specialize
within the hierarchy.

The diagram below illustrates the difference between abstract and concrete types for scalars. This

done by presenting the hierarchy of the type [Number] where the labels included match tr
corresponding type name in Julia. 2



HIERARCHY OF TYPE NUMBER
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The distinction between abstract and concrete types for scalars is relatively straightforward. Instea
the same distinction becomes more nuanced when vectors are considered, as shown in the diagral
below.

HIERARCHY OF TYPE VECTOR

____________ -1

Note: Dashed red borders indicate iabstract types;, while solid blue borders indicate

4

concrete typesi.

»



The tree reveals that for a given type [T] is a concrete type. By definition, this mear
variables can be instances of |Vector{T}|and |Vector{T}| can't have subtypes. The latter in particul

implies that a vector like [Vector{Int64}]isn't a subtype of [Vector{Any}] even though is

subtype of [Any]. This behavior stands in stark contrast to scalars, where is an abstract typ:
However, it aligns perfectly with the concept of vectors as collections of homogeneous element

meaning they all share the same type.

ONLY CONCRETE TYPES CAN BE INSTANTIATED, ABSTRACT TYPES CAN'T

In Julia, instantiation refers to the process of creating an object with a specific type. A key principle «
Julia's type system is that only concrete types can be instantiated, implying that values can never t
represented by abstract types. This distinction helps clarify the meaning of some widesprea
expressions used in Julia. For example, stating that a variable has type shouldn't be interprete
literally. Rather, it means the variable can hold values of any concrete type, since all concrete types |

Julia are subtypes of [Any]|.

This distinction will become crucial for what follows, particularly for type-annotating variables.
implies that declaring a variable with an abstract type restricts the set of possible concrete types it ca
hold, even though the variable will ultimately adopt a concrete type.

RELEVANCE FOR TYPE STABILITY

At this point, you may be wondering how all these concepts relate to type stability. The connectio

becomes clear when you consider how Julia performs computations.

High performance in Julia relies heavily on specializing the computation method. We'll see that th
specialization is unattainable in the global scope, as Julia treats global variables as potentially holdir
values of any type. In contrast, when code is wrapped in a function, the execution process begins t
determining the concrete types of each function argument. This information is then used to infer tk
concrete types of all the expressions within the function body.

When this inference succeeds, meaning all expressions have unambiguous concrete types, tr
function is considered type stable. TType stability enables Julia to specialize its computation metho
and generate optimized machine code. If, instead, expressions could potentially take on multip
concrete types, performance is substantially degraded, as Julia must consider a separat
implementation for each possible type.

For scalars and vectors, type stability essentially requires that expressions ultimately operate o
primitive types. Examples of numeric primitive types include integers and floating-point number
such as [Int64] [Float64| and [Bool] Thus, applying functions like to a [Vector{Int64}] c
[Vector{Float64} ] allows for full specialization, whereas applying them to a prevents it.

"

String Objects

For text representation, the character type serves as the primitive

type. Since a is internally represented as a collection of [Char |
elements, operations on objects can also achieve type stability.

»



THE OPERATOR <: TO IDENTIFY SUPERTYPES

The rest of this section is dedicated to operators and functions for working with types. Specificall
we'll introduce the operator , which checks whether a given type is a subtype of another, and the
explore ways to constrain a variable to certain types.

It's possible that you won't need to apply any of the techniques we present, as Julia automaticall
attempts to infer types when functions are called. Nonetheless, understanding these operators
essential for grasping upcoming material.

USE OF

The symbol [ :<]tests whether a type [T]is a subtype of another type[s]. It can be used as an operat

or as a function [<:(T,S)]. For example, [Int64 <: Number|and [<:(Int64, Number) | verifi
whether [Int64] is a subtype of [Number] which would return [true] Below, we provide furth

examples.

# all the statements below are 'true'’
Floaté6d <: Any

Inted <: Number

Inted <: Inted

# all the statements below are ‘false’
Floatéd <: Vector{Any}

Inted  <: Vector{Number}

Intéd <: Vector{Inteu}

The fact that [Int64 <: Inté4]evaluates to illustrates a fundamental principle: every type is
subtype of itself. Moreover, in the case of concrete types, this is the only subtype.

THE KEYWORD |WHERE

By combining | <: | with [union]| you can also check whether a type belongs to a given set of types. F
example, [Int64 <: Union{Int64, Float64}| assesses whether [Int64]| equals |Int64| or |Float64

thus returning [true].
The approach can be made more widely applicable by using the keyword with a typ

parameter . 3. The syntax is [<type depending on T> where T <: <set of types>] In this way, [T

represents multiple possibilities.

# all the statements below are 'true’

Floatéd <: Any

Int6d  <: Union{Intéud, Floatéu}

Intéd  <: Union{T, String} where T <: Number # 'String’ represents text




# all the statements below are 'true’

Vector{Floatéu} <: Vector{T} where T <: Any

Vector{Int6d} <: Vector{T} where T <: Union{Int6u4, Floateu}
Vector{Number} <: Vector{T} where T <: Any

# all the statements below are ‘false’
Vector{Floatéu} <: Vector{Any}

Vector{Inted} <: Vector{Union{Inté6u, Floateu}}
Vector{Number} <: Vector{Any}

# all the statements below are 'true’
Vector{Float6u} <: Vector{<:Any}

Vector{Int6d} <: Vector{<:Union{Intéud, Floatéu}}
Vector{Number} <: Vector{<:Any}

# all the statements below are 'false’
Vector{Float6u} <: Vector{Any}

Vector{Inted} <: Vector{Union{Inté6u, Floateu}}
Vector{Number} <: Vector{Any}

Types that add parameters like | T | are called parametric types. In the example above, they allow us

to distinguish between a concrete type like and a set of concrete types |Vector{T}

where T <: Any|, where the latter encompasses [Vector{Int64} | [Vector{Float64} | [Vector{String}|

etc.

Warning! - The Type
When we omit [<: | and simply write [where T} Julia implicitly interprets

the statement as [where T <: Any| This is why we can establish the

following equivalences.

# all the statements below are 'true'’
Floated <: Any

Floated <: T where T <: Any # identical to
the line above

Vector{Int6u} <: Vector{T} where T <: Any

# all the statements below are 'true’
Floated <: Any

Floated <: T where T # identical to
the line above

Vector{Int6u} <: Vector{T} where T

TYPE-ANNOTATING VARIABLES




In the following, we present methods for type-annotating variables. The techniques introduced can
be used either to assert a variable's type during an assignment or to restrict the types of function
arguments.

Specifically, there are two approaches to type-annotating variables. The first one relies on the binary

operator [::] and its syntax is [x::<type>] The second approach leverages the Boolean binary
operator [<:] combined with [::]and the keyword [where]. Its syntax is [x::T where T <: <type>
(note that| T| accepts any other letter).

Next, we illustrate both methods, considering type-annotations for assignments and for function
arguments separately.

ASSIGNMENTS

Let's start illustrating the approaches for scalar assignments. Each tab below declares an identical type

for [x]and for [y].

x::Intéu =2 # only reassignments to 'Inté64d’ are possible

y: :Number =2 # only reassignments to ‘Floatéd’, ‘Float32', 'Inté4’, etq
are possible

jutia>

ERROR: InexactError: Int64(2.5)

jutias

2.5

julia> |y = "hello"

ERROR: MethodError: Cannot convert an object of type String to an object of type Number

x::T where T <: Int6ed = 2 # only reassignments to 'Inté64d’ are possible

y::T where T <: Number = 2 # only reassignments to ‘'Float64’, 'Float32', 'Inté6d’, etq
are possible

jutie>

ERROR: InexactError: Int64(2.5)

julia>

2.5

julia> |y = "hello"

ERROR: MethodError: Cannot convert an object of type String to an object of type Number

Warning! - Modifying Types
Once you assert a type for in an assignment, you can't modify 's

type afterwards. The only way to fix this is by starting a new Julia
session.



The fact that retains the same type across all tabs follows because |T <: Float64| can only

represent [Float64] This fact arises because is a concrete type, which has no subtypes other

than itself by definition. Considering this, scalar types are usually asserted using[ : : | rather than[<:|.

On the contrary, the implications when [:: ] or is chosen differs for vectors. Specifically, using [ ::
in combination with |vector{Number} | establishes that [vector{Number} | is the only possible concrete
type. Instead, [Vector{T} where T <: Number |indicates that the elements of the vector will adopt a
concrete type that's a subtype of [Number | rather than the object adopting [Vector {Number} |

# 'x' will always be 'Vector{Any}'
x::Vector{Any} = [1,2,3]

# 'y’ will always be 'Vector{Number}'
y::Vector{Number} = [1,2,3]

julia> | typeof(x)

Vector{Any} (alias for Array{Any, 1})

julia> | typeof(y)

Vector{Number} (alias for Array{Number, 1})

# 'x' is Vector{Inté4} and could eventually become 'Vector{Floaté6u}', 'Vector{String}', etc
x::Vector{T} where T <:Any = [1,2,3]

# 'x' is Vector{Intéd4} and could eventually become 'Vector{Floatéed}', 'Vector{Int32}', etc
y::Vector{T} where T <: Number = [1,2,3]

julia> |typeof(x)

Vector{Int64} (alias for Array{Int64, 1})

julia> | typeof(y)

Vector{Int64} (alias for Array{Int64, 1})

The principles outlined apply even when a variable isn't explicitly type-annotated. The reason is that
an assignment without | :: | implicitly assigns the type to the variable, where is the
supertype encompassing all possible types. For example, the statements|[x = 2]|and|x::Any = 2|are

equivalent.

The same occurs when omitting [<: | from the expression [where T], which implicitly takes [T <: Any]
Thus, for instance, [x = 2] is equivalent to [x::T where T = 2]or [x::T where T <: Any = 2]
Considering this, all the variables below have their types restricted in the same way.

# all are equivalent
a =2
b::Any = 2




# all are equivalent

a =2
b::T where T =2
c::T where T <: Any = 2

The default restriction of variables to the type is the reason why we can reassign variables with

any value. For instance, given[a = 1], executing afterwards is valid, since [a]is implicitly

type-annotated with [Any].

(

Warning! - One-liner Statements Using ‘'where’

Be careful with one-liner statements using [where], especially when

is shorthand for [where T <: Any]. These concise statements

can easily lead to confusion, as demonstrated below.

a::T where T = 2
= 2

notation
a::T where {T <: Any} =
notation

a::T where {T} =

# this is not 'T = 2', it's

# slightly less confusing

# slightly less confusing

foo(x::T) where T = 2
“foo(x) = 2°

foo(x::T) where {T}
notation

notation

foo(x::T) where {T <: Any}

# this is not 'T = 2, it'4

=2 # slightly less confusing

= 2 # slightly less confusing

FUNCTIONS

Function arguments can also be type-annotated. The examples below illustrate this by restricting the

function to accept integer inputs exclusively.

function fool(x::Inté6d, y::Inteu)

X +y
end
julia>
3

julia> [foo1(1.5, 2)]|

ERROR: MethodError: no method matching fool(::Float64, ::Int64)




function foo2(x::Vector{T}, y::Vector{T}) where T <: Intéu
X .+y
end

julia> [foo2([1,2], [3,4])]
2-element Vector{Int64}:

4

6

julia> [foo2([1,2], [3.0, 4.0])]
ERROR: MethodError: no method matching foo2(::Vector{Int64}, ::Vector{Float64})

Note that type-annotating both arguments with the same parameter |T | forces them to have exactly

the same type. Also notice that types like preclude the use of [Float64], even for numbers like
[3.0] If you need greater flexibility, you should introduce different type parameters and annotate

them with an abstract type like [Number .

function foo2(x::T, y::T) where T <: Number
X +y
end

julia> [fo02(1.5, 2.0)]

3.5

julia> | foo2(1.5, 2)]|

ERROR: MethodError: no method matching foo2(::Float64, ::Int64)

function foo3(x::T, y::S) where {T <: Number, S <: Number}
X +y
end

julia> [f003(1.5, 2.0)]|
3.5

julia> |foo3(1.5, 2)|
3.5

The greatest flexibility is achieved when we don't type-annotate function arguments at all, as they will
implicitly default to [Any] This can be observed below, where all tabs define identical functions.
Ultimately, type-annotating function arguments is only needed to prevent invalid usage (e.g., to ensure

that isn't applied to a negative value).

function foo(x, v)
X +y
end

function foo(x::Any, y::Any)
X +y
end




function foo(x::T, y::S) where {T <: Any, S <: Any}
X +y
end

function foo(x::T, y::S) where {T, S}
X +y
end

CREATING VARIABLES WITH SOME TYPE

To conclude this section, we present an approach to defining variables with a given type. The
approach relies on the so-called constructors, which are functions that create new instances of a
concrete type. They're useful for transforming a variable | x |into another type.

Constructors are implemented by functions of the form [Type(x)] where should be replaced
with the literal name of the type (e.g., [Vector{Float64}]). Just like any other function, supports

broadcasting.

Float6ed(x)
Bool(x)

julia>

1.0

julia>

true

y
z

[1, 2, 3]

x
1

y = Vector{Any}(x)

julia>
3-element Vector{Any}:
1

2

3

x
|

= [1, 2, 3]

Floateéd. (x)

y

julia>
3-element Vector{Float64}:
1.0

2.0
3.0




Remark

Parametric types can be used as constructors. Moreover, although
abstract types can't be instantiated, they may still serve as constructors.
In such cases, Julia will attempt to convert the object to a specific
concrete type, although not all abstract types can be used for this
purpose.

y = Number(x)

julia> | typeof(y)

Int64

x = [1, 2]

y = (Vector{T} where T)(x)

julia> | typeof(y)

Vector{Int64}

z = Any(x)

ERROR: MethodError: no constructors have been defined
for Any

There's an alternative way to transform [x]'s type into [T] as long as the conversion is feasible. This is

given by the function | convert(T,x) |

y = convert(Floatéld, x)
z = convert(Bool, x)

julia>

1.0

julia>

true




[1, 2, 3]

x
1l

y = convert(Vector{Any}, x)

julia>

3-element Vector{Any}:

1
2
3
x = [1, 2, 3]
y = convert.(Floatéd, x)

julia>
3-element Vector{Float64}:
1.0

0
0

2.
3.

FOOTNOTES

! Types don't necessarily follow a subtype-supertype hierarchy. For example, [Float64]and [Vvector{String} | exist
independently, without a hierarchical relationship. This fact will become clearer when the concepts of abstract and
concrete types are defined.

2 The subtype of [Integers |allows for the representation of negative and positive integers. Julia also offers
the type [Unsigned], which only accepts positive integers and comprises subtypes such as [UInt64]and [UInt32].

3-[T] can be replaced by any other letter
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INTRODUCTION

In Julia, functions are key for achieving high performance. This is by design, as functions have been

engineered from the outset to generate efficient machine code.

However, to fully unlock their potential, we must first understand the underlying process of function
calls. Essentially, when a function is called, Julia attempts to identify concrete types for its variables,
then selecting the most suitable method for the function. At the heart of the process are three
interconnected mechanisms: dispatch, compilation, and type inference. This section will provide a
detailed explanation of each concept.

FUNCTIONS AND GLOBAL VARIABLES

To fully grasp how functions enhance performance in Julia, it's essential to examine their relationship
with variable scope. Local variables encompass all variables defined within a function's scope,
including function arguments and variables declared inside the function body. These variables exist
only during the function's execution and are inaccessible from outside the function. Global variables,
on the other hand, refer to any variable defined outside a function's scope and and remain accessible
throughout the program's execution.

One of the main takeaway of this section is that wrapping operations within functions is crucial for
achieving high performance in Julia. Instead, working in the global scope, or more generally relying
on global variables, precludes any performance implementation.

The low performance of global variables arises because Julia treats them as potentially embodying any
value and therefore any type. This decision was adopted under the logic that, even if a variable holds
some value at a specific moment, the user may reassign it at any part of the program.

The detrimental effect of global variables isn't confined to operations in the global scope. It also arises
when a function references external variables that haven't been passed as arguments. Considering
this, our conclusions apply to all the following cases.



GLOBAL VARIABLE IN GLOBAL SCOPE

X 2

y 3 % X
julia>

6

GLOBAL VARIABLE IN FUNCTION
X 2

foo() 3 % X

julia> [foo0)]

6

Recall that an expression like is shorthand for [x::Any = 2] reflecting that global variables

default to unless they're explicitly type-annotated. Also remember that only concrete types can
be instantiated, meaning that values can only adopt a concrete type. Consequently, shouldn't
be understood as [x] having type [Any], but rather that [x] can take on any concrete type that is a

subtype of [Any]. Since is at the top of Julia's type hierarchy, this simply means that[x]'s types are
unrestricted.

Working with a variable like [x] that has type [Any] prevents specialization of [*]. The reason is that
Julia must consider multiple possible methods for its computation, one for each possible concrete
type of [x]. In practice, this results in Julia generating code with multiple branches, potentially involving
type checks, conversions, and object creations. The consequence is degraded performance.

Even if we had type-annotated with a concrete type like |[x::Int64 = 2| the performance

limitations wouldn't completely go away. This is because certain optimizations can only be
implemented when both the scope of variables is clearly delimited and their values are known. When
both aspects are known, Julia can gain a comprehensive view of all the operations to be performed,
creating opportunities for further optimizations.

Functions were designed in Julia to address all these considerations. This is accomplished through a
series of steps that functions follow, which we cover next.

FUNCTIONS AND METHODS

A function is just a name that groups an arbitrary number of methods. Each method, in turn, defines
a specific function body for a given combination of number and types of arguments. The list of

methods associated with a function can be retrieved by running the command [methods (foo) ]

To illustrate these concepts, let's define several methods for some function named [foo]. To keep
matters simple, let's start considering a scenario where all the methods in have the same
number of arguments. Creating methods requires type-annotating ‘s arguments with the



operator E| during its definition. Then, we can provide a distinct body function for each unique
combination of these types.

METHODS

foo(a,b) a+b
foo(a::String, b::String) = "This is $a and this is $b"

julia> [methods(foo)]

2 methods for generic function "foo" from Main

julia>

3

julia> ]foo(”some text", "more text”)‘

"This is some text and this is more text"

Since is equivalent to [foo(a: :Any, b: :Any) | the first method sets the behavior of [foo| for
any combination of input types. However, such behavior is overridden by the method | foo(a::String,
b::String) ] which provides an alternative function body for [a] and [b] with type [String]. The
existence of multiple methods explains the different outputs obtained: the first method of is
called with [foo(1, 2)], whereas[foo("some text", "more text")]triggers the second method.

The example also reveals that methods don't need to comprise similar operations. Although
mixing drastically different operations under a single function name isn't recommended, allowing
function bodies to differ by method creates opportunities for optimizations. In particular, it allows for
computation algorithms tailored to each specific type combination, thus optimizing the overall
performance of a function.

Additionally, note that methods don't need to have the same number of arguments. For instance,
it's possible to define all the following methods for a function [bar].

METHODS WITH DIFFERENT NUMBERS OF ARGUMENTS
bar(x) = X

bar(x, vy) =X +y

bar(x, v, z) =x +y + z

julia> [methods(bar)]

3 methods for generic function "bar" from Main

julia>

1
julia>
3

julia> [bar(1, 2, 3)]
6

This feature is particularly useful for extending a function's behavior. A prime application is given by
the function [sum]. So far, we've only used its simplest form [sum(x)], which adds all the elements of a
collection [x]. However, also supports additional methods. One of them is[sum(<function>, x)]|




where the elements of [x] are first transformed via before being summed.

METHODS FOR 'SUM'

x = [2, 3, d]

y = sum(x) #2+ 3+ 4

z = sum(log, x) # log(2) + log(3) + log(4)

FUNCTION CALL

Given a function and its methods, we can now analyze the process triggered when a function is called.
In the following, we'll base our explanations on the following function[foo:

EXAMPLE FUNCTION 'FOO'
foo(a, b) =2 +a*b

julie> [Foo(z, 2)]

4

jutia> [Foo(3, 2))

8

jutia> [foo(30, 2)]

8.0

Recall that variables with no type annotation default to . This implies that the function body

holds for any combination of types of [a]and[b]

MULTIPLE DISPATCH
When is called, Julia is instructed to evaluate the expression [2 + a * b]. This process

relies on a mechanism known as multiple dispatch, where Julia decides on the computational

approach to be implemented. Importantly, this decision is based on solely on the types of the
arguments, not their values.

Multiple dispatch proceeds in several steps. First, the compiler determines the concrete types of the
function arguments. In our example, since [a = 1], and[b = 2] both are identified as [Int64].

After this, the information on types is used to select a method, which defines the function body and
hence the operations to be performed. This process involves searching through all available methods
of until a method that matches the concrete types of [a] and [b] is identified. In our example,
has only one method [foo(a,b) = 2 + a * b}, which applies to all type combinations of [a] and

[b] Consequently, the relevant function body is[2 + a * b]

The operations to be performed are then forwarded to the compiler, which is in charge of the

implementation. This involves choosing a method instance, which refers to the specific code
implementation that will be used to compute the operations defined by the method.



If a method instance already exists for the function signature |[foo(a::Int64, b::Int64)| Julia will
directly employ it to compute |foo(1, 2) | Otherwise, a new method instance is generated and stored
(cached) in memory.

The following diagram depicts all the process unfolded when is executed.

MULTIPLE DISPATCH

The process determines that the first time you call a function with particular argument types, there's

an initial compilation overhead. This phenomenon is referred to in Julia as Time To First Plot. Instead,
subsequent calls with the same argument types can reuse this cached code, resulting in faster
execution.

To illustrate this mechanism, note that the call incorporated in the example occurs after

[foo(1,2)] This allows Julia to compute by directly invoking the method instance

[foo(a::Int64, b::Int64) | without the need of compiling code. Instead, executing a function call like
requires the compilation of a new method instance |foo(a::Float64, b::Int64)]| since

the types of [3]and differ.

TYPE INFERENCE

During a function call, two different stages take place: compilation time and runtime. Compilation
time consists of the steps just described, during which Julia generates machine code to execute the
function's operations. Importantly, this stage involves no computations, and is triggered only when the
function is called for the first time with new concrete types.

In contrast, runtime is the stage during which code instructions are actually executed. It takes place
after compilation and every time a function is called.

Most considerations for achieving high performance are related to the compilation process. In
particular, Julia employs Just-In-Time Compilation (JIT), a term reflecting that compilation happens
on the fly during the function call.

The quality of code generated during JIT critically determines performance. A key mechanism in this
process is type inference, whereby the compiler attempts to identify concrete types for all variables
and expressions.

If the compiler succeeds in identifying concrete types, it can specialize instructions for each operation
and yield fast code. This is the essence of type stability, which we'll cover extensively in the next
chapter. For instance, type inference in our example involves determining concrete types for , a =

1], and [b = 2] Since all of them have type [Int64] the compiler can specialize the computation of [2_ +
a_* b|for variables with type [Int64].

On the contrary, if the compiler is unable to identify concrete types for some expressions, the
compiler must generate generic code that accommodates multiple type possibilities. This forces Julia
to defer decisions on methods to runtime, significantly degrading performance.



REMARKS ON TYPE INFERENCE

Below, we provide various remarks about type inference that are worth keeping in mind.

FUNCTIONS DO NOT GUARANTEE CONCRETE TYPES

Notice that merely wrapping operations in a function doesn't guarantee that the compiler will identify

concrete types. The following example presents a function call that's unable to do so.

TYPE-UNSTABLE FUNCTION

X = [1, 2, "hello"] # Vector{Any}
foo(x) = x[1] + x[2] # type unstable
jutia>

3

In the example provided, the issue arises because the compiler assigns the type to and

since they correspond to elements from an object with type |Vvector{Any} | Consequently, the
compiler can't specialize the computation of the operation [+]. The example also highlights that

compilation is exclusively based on types, not values. Thus, the code is generated ignoring that
actually [x[1] = 1]and [x[2] = 2] and so are[Int64]

GLOBAL VARIABLES INHERIT THEIR GLOBAL TYPE

Julia's attempt to identify concrete types is restricted to local variables. Instead, any global variable will

have its type inherited from the global scope. For instance, consider the following example.

GLOBAL VARIABLE
a =2

b =1
foo(a) =ax*xb
julia>

2

TYPE-ANNOTATED GLOBAL VARIABLE

a =2
b::Number = 1

foo(a)

julia>

2

a*b




In both examples [b] is a global variable. Consequently, [b]'s type in the first tab is inferred to [Any],
while in the second tab to [ Number |.

TYPE-ANNOTATING FUNCTION ARGUMENTS DOES NOT IMPROVE
PERFORMANCE

Identifying concrete types is key for achieving performance. This might lead you to believe that type-

annotating function arguments is essential for performance, or that at least could provide a boost.
However, type-annotating arguments is actually redundant due to type inference. In fact, engaging in
this practice will unnecessarily constrain the types accepted by the function, reducing the range of
potential applications. To better appreciate this loss of flexibility, compare the following scripts.

TYPE-ANNOTATED FUNCTION
fool(a::Float6ld, b::Float6d) = a * b

julia> [f001(0.5, 2.0)]
1.0

julia>

ERROR: MethodError: no method matching fool(::Int64, ::Int64)

UNANNOTATED FUNCTION
foo2(a, b) =a * b

julia> [f002(0.5, 2.0)]

1.0
julia>
2

The function on the first tab only accepts arguments with type [Float64] Note that even integer
variables are disallowed, as function arguments aren't converted to a common type. On the contrary,
the function's second tab entails the same process for inputs, but additionally allows for
other types. The flexibility stems from the implicit type-annotation for the function arguments.

)
Packages Commonly Type-Annotate Function Arguments

When inspect the code of packages, you may notice that function
arguments are often type-annotated. The reason for this isn't related to
performance, but rather to ensure the function's intended usage,
safeguarding against inadvertent type mismatches.

For instance, suppose a function to the revenue of a theater via

[nr_tickets * price| Importantly, the operator in Julia not only
implements the product of numbers, but also concatenates words when

applied to expressions with type [String]. This opens up the possibility
of misusing the function if it's not type-annotated. The first tab

demonstrates a potential misuse of this function, with the second tab
addressing this possibility by asserting types.




UNANNOTATED FUNCTION

revenuel(nr_tickets, price) = nr_tickets * price

julia> [revenuel(3, 2)|

6

julia> |revenue1("this is ", "allowed")|
"this is allowed"

TYPE-ANNOTATED FUNCTION

revenue2(nr_tickets::Int6d, price::Number) = nr_tickets * price

julia> [revenue2(3, 2)]
6
julia> |revenue2("this is ", "not allowed”)|

ERROR: MethodError: no method matching revenue2(::String,
::String)
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In the upcoming chapters, we'll focus on two essential aspects for performance: type stability and
reductions in memory allocation. These core principles represent the most basic procedures to
achieve high performance, thus acting as the starting point for further optimizations.

This chapter in particular focuses on type stability, whose importance for Julia can't be overstated
—any attempt to generate fast code without ensuring type stability is destined to fail.

At its core, type stability is rooted in how computers execute operations at a fundamental level.
Specifically, regardless of the programming language used, the approach to computing operations
differs depending on the inputs' types. This means, for instance, that the internal process for integer
operations differs from computations based on floating-point numbers.

The consequence of this feature for performance is that speed demands the identification of concrete
types for each variable. With this information available, the computation method can be specialized.
Instead, if concrete types can't be identified, the code generated must accommodate multiple
potential approaches, one for each possible combination of input types. This introduces additional
runtime checks and type conversions, significantly degrading execution speed.

The discussion of type stability will be intertwined with functions, as type stability requires wrapping
code in function as a prerequisite. The reason for this is that Julia only attempts to infer the types of
variables within a function. Wrapping code in a function is only a necessary condition for type stability,
and the chapter will provide additional conditions to guarantee the property.
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INTRODUCTION

This section formally defines type stability and reviews the tools employed for its verification. In the
next section, we'll begin examining how type stability applies in specific scenarios.

AN INTUITION

In_a previous section, we described the process that unfolds when a function is called. To briefly
review, let's consider a function |foo(x) = x + 2|and executing for some variable [a] We
assume that |E| has a specific value assigned and therefore a concrete type, although we omit

explicitly stating values for |E| In this way, we highlight that the process depends on types, rather than
values.

Calling prompts Julia to identify the concrete type of [a], which we'll denote as [T]. If a

compiled method instance for with an argument of type [T] already exists, then is
executed immediately. Otherwise, Julia compiles a method instance for evaluating [a + 2]. This code

generation leverages type inference, wherein the compiler attempts to deduce concrete types for all
involved terms. The resulting machine code is then stored (cached), making it readily available for

subsequent calls of [foo(b) |when[b] has type[T].

TYPE STABILITY AND PERFORMANCE

The key to generating fast code lies in the information available to the compiler during the compilation

stage. This information is primarily gathered through type inference, where Julia identifies the specific
type of each variable and expression involved. When the compiler can accurately predict a single
concrete type for the function's output, the function call is said to be type stable.

While this constitutes the formal definition of type stability, a more stringent definition is usually

applied in practice: the compiler must be able to infer unique concrete types for each expression

within the function, not only for the final output. This definition aligns with [@code_warntype|, the

built-in macro to detect type instabilities.

If the condition is satisfied, the compiler can specialize the computational approach for each
operation, resulting in fast execution. Essentially, type stability dictates that there's sufficient
information to determine a straight execution path, thus avoiding unnecessary type checks and
dispatches at runtime.
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In contrast, type-unstable functions generate generic code that accommodates each possible
combination of unique concrete types. This results in additional overhead during runtime, where Julia
is forced to dynamically gather type information and perform extra calculations based on it. The
consequence is a pronounced deterioration in performance.

"

Type Stability Characterizes Function Calls

It's common to describe a function as "type stable". Nevertheless, it's
not the function itself that's type stable, but rather the function calls for
specific concrete types of its arguments. The distinction is crucial in
practice, since a function may exhibit type stability for certain input
types but not others.

AN EXAMPLE

To see type stability in practice, let's consider the following example.

x = [1, 2, 3] # 'x' has type ‘Vector{Inteu}’

@btime sum($x[1:21) # type stable

22.406 ns (1 allocation: 80 bytes)

x = [1, 2, "hello"] # 'x' has type ‘Vector{Any}'

@btime sum($x[1:21) # type UNSTABLE

31.938 ns (1 allocation: 64 bytes)

The two operations may seem equivalent, as they both ultimately compute [1 + 2] However, the
methods used in each case differ, with the first approach being faster because the function call is type
stable.

Specifically, the output in the first tab can be deduced to be [Int64], thus satisfying the
definition of type stability. This occurs because [x[1]]and [x[2]] can be identified as [Int64], allowing
the compiler to generate code specialized for this type. Note that the efficiency of the generated code
isn't limited to the given operation: it applies to any call such that[y]is a[vector{Float64} ]

In contrast, the second tab defines a type-unstable function call. Since | x| has type [Vector{Any} |

it becomes impossible to predict a unique concrete type for [x[1] + x[2]] solely based on [x]s type.
This is because and may embody any concrete type that is a subtype of [Any]

Consequently, the compiler is forced to create code with multiple conditional statements, with each

branch handling how to compute [x[1] + x[2]]|for a possible type (| Int64| [Float64] [Float32] etc.).
This results in slow compiled code, as it'll require extra work during runtime. Furthermore, the

degraded performance will be incurred for every call such that[y] has type[vector{Any} |

U




(
Remark

Julia's developers are continually refining the compiler, addressing and
mitigating the effects of certain type instabilities. As a result, many
operations that were once type unstable are now type stable. This
means that type stability should be considered a dynamic property of
the language, subject to change as the compiler evolves.

CHECKING FOR TYPE STABILITY

There are several mechanisms to determine whether a function call is type stable. One of them is

based on the |@code_warntype | macro, which reports all the types inferred during a function call. To

illustrate its use, consider a function that defines [y] as a transformation of [x], and then uses [y] to
perform some operation.

function foo(x)
y=x<0)? 0 : x

return [y * i for i in 1:100]
end

julia> [@code_warntype foo(1.)]

function foo(x)
y=x<0)? 0 : x

return [y * i for i in 1:100]
end

julia> ]@Codefwarntype foo(l)\

The output of [@code_warntype| can be difficult to interpret. Nonetheless, the addition of colors
facilitates its understanding:

e If all lines are blue, the function is type stable. This means that Julia can identify a unique
concrete type for each variable.

« If at least one line is red, the function is type unstable. It reflects that one variable or more
could potentially adopt multiple possible types.

e Yellow lines indicate type instabilities that the compiler can handle effectively, in the sense

that they have a reduced impact on performance. As a rule of thumb, you can safely ignore
them.

Warning!



Throughout the website, we'll refer to type instabilities as those
indicated by a red warning exclusively. Yellow warnings will be mostly
ignored.

In the provided example, the compiler attempts to infer concrete types. This is done by identifying two
pieces of information, given ‘s concrete type:

i) the type of [y],
ii) the type of [y * i|where[i]has type[Int64] implicitly defining the type of [[y * i for i in
The example clearly demonstrates that the same function can be type stable or unstable

depending on the types of its inputs: is type stable when [x] has type [Int64], but type unstable
when ] is[Floatea]

Specifically, in the scenario where the compiler infers for j) that[y] can be equal to either[e]or

[x] Since both [@] and [1] are [Int64], the compiler identifies a unique type for [y], given by [Int64]

Regarding i), also yields an [Int64] as both[i] and [y]have type [Int64] This determines that
[[y * i for i in 1:100]] has type [Vector{Int64} | Consequently, is type stable, enabling

Julia to invoke a method specialized for integers.

As for [x = 1.0] the information for i) is that [y] could be either [0] or[1.0]. As a result, the compiler

can't infer a unique type for [y] which could be either [Int64] or [Float64] The [@code_warntype

macro reflects this, identifying [y | as having type [Union{Float64, Int64}| This ambiguity affects ij),

forcing the compiler to consider approaches that handle both and and hence
preventing specialization. Overall, is type unstable, which has a detrimental impact on

performance.

Remark

The conclusions regarding type stability wouldn't have changed if we
had considered, for instance, [foo(-2)]| or [foo(-2.0) | This is because

the compilation process relies on information about types, not values.
More specifically, this means that type stability depends on whether
has type | Int64 |or |Float64 | regardless of its actual value.

YELLOW WARNINGS MAY TURN RED

Not all instances of type instabilities have the same impact on performance. Their severity is ultimately
indicated through a yellow or red warning. Yellow warnings denote a relatively minor impact on
performance, typically resulting from isolated computations that Julia can handle effectively. However,
repeated execution of these operations may escalate into more serious performance issues, triggering

a red warning. The following example demonstrates a scenario like this.



function foo(x)
y=((x<0)? 0 : x

y * 2
end

julia> \@codefwarntype foo(l.)\

function foo(x)
y=((x<0)? 0 : x

[y » i for i in 1:100]
end

julia> \@Codefwarntype foo(l.)‘

function foo(x)
y=x<0)? 0 : x

for i in 1:100
y=y+i
end

return vy
end

julia> [@code_warntype foo(1.) |

The yellow warning reflects that could return either a [Float64]or [Int64]value. However, this
operation is computed only once and based on two types that the compiler can handle efficiently.
Instead, the second tab involves multiple computations without knowledge of a unique

concrete type for [y] resulting in a red warning.

Despite this, note that not all yellow warnings will necessarily escalate to a red warning when

incorporated into a for-loop. The third tab illustrates this point, reinforcing that not all type instabilities

are equally detrimental.

(
For-Loops and Yellow Warnings

A yellow warning will always be displayed when running a for-loop, even
if the operation itself is type stable. In such cases, the warning can
safely be disregarded, as it simply reflects the inherent behavior of
iterators: they return either the next element to iterate over or

with type when the sequence is exhausted.




function foo()
for i in 1:100
i
end

end

julia> [@code_warntype foo()]

MethodInstance for foo()
from foo()

“ore. getfield(?
re.getfield(%6, 2
)
Base.iterate(%1, %8))
nothing)
ase.not_int(%11)
goto #4 not %
goto #2
return nothing
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INTRODUCTION

The previous section has defined type stability, along with approaches to checking whether the
property holds. In this section, we start the analysis of type stability for specific objects. We cover in
particular the case of scalars and vectors, providing practical guidance for achieving type stability with
them.

TYPES OF SCALARS AND VECTORS

Recall that the formal definition of a type-stable function is that the function's output type can be
inferred from its argument types. In practice, however, we often rely on a more stringent definition,
which requires that the compiler can infer a single concrete type for each expression within the
function body. This property guarantees that every operation is specialized, resulting in optimal
performance. Nevertheless, simply demanding that the output's type can be inferred already offers
benefits, as it ensures that type instability won't be propagated when the function is called in other
operations.

The principle applied to scalars is straightforward, demanding operations be performed on variables

with the same concrete type (e.g., [Float64| |Int64] [Bool]). In contrast, type stability for vectors

rather requires that the elements have a concrete type. The following table identifies scalars and
vectors satisfying this property.

Objects Whose Elements Have Concrete Types

Scalars Vectors
Int
[Vector{Int64} |
[Vector{Float64} |

BitVector

Note: defaults to[Int64]or[Int32], depending on your CPU's architecture.

Next, we'll delve into type stability in scalars and vectors, considering each case separately.
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TYPE STABILITY WITH SCALARS

To make the definition of type stability for scalars operational, let's revisit some concepts about types.

Recall that only concrete types like [ Int64]| or [Float64| can be instantiated, while abstract types like

[Any | or [Number | can't.

Instantiation simply means that all values ultimately adopt a unique concrete type. For instance, a
variable [x::Number = 2]shouldn't be interpreted as [x] having the type [Number |. Instead, it means
that [x] can only be reassigned to values whose concrete type is a subtype of [Number |. Ultimately, [x
must have a concrete type, which in this case is [Int64].

In this context, type instability may arise when operations mix [ Int64|and|Float64| although this isn't

always the case. To illustrate this, we'll start showing some scenarios where mixing these types
doesn't cause issues.

TYPE PROMOTION AND CONVERSION

Julia employs various mechanisms to handle cases combining [Int64| and [Float64| The first one is

part of a concept known as type promotion, which converts dissimilar types to a common one
whenever possible. The second one emerges when variables are type-annotated, in which case Julia
engages in type conversions. By transforming values to the respective type declared, this feature
could also prevent the mix of types.

Both mechanisms are illustrated below.

foo(x,y) =x *y
=2
y = 0.5
z = foo(x,y) # type stable: mixing 'Int64' and ‘Float64’ results in
‘Floated'
julia>
1.0
foolx,y) =x*y
x::Floated = 2 # this is converted to '2.0°
= 0.5
z = foo(x,y) # type stable: 'x' and 'y' are 'Floaté64’, so predictable type
of output
julia>
1.0
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In the first tab, the output's type depends on the argument's types. However, in all cases the output's
type can be predicted, since mixing [Int64] and [Float64 | results in due to automatic type
promotion. As for the second tab, Julia transforms the value of to make it consistent with the type-
annotation declared. Consequently, [x * y] is computed as the product of two values with type

[Floated].

TYPE INSTABILITY WITH SCALARS

While type promotion and conversion can handle certain situations, they certainly don't cover all

cases. One such scenario is when a scalar's value depends on a conditional statement and each
branch returns a value of a different type. In this situation, since the compiler only considers the types
and not values, it can't determine which branch is relevant for the function call. As a result, it'l
generate code that accommodates both possibilities, as it happens in the following example.

function foo(x,y)
a=x>y)? x : vy

[a * i for 1 in 1:100_000]
end

foo(1, 2) # type stable -> 'a * i’ is always 'Inté64’

julia> [@btime foo(1,2)]
23.800 ps (2 allocations: 781.30 KiB)

function foo(x,y)
a=kx>y)? x : vy

[a * 1 for i in 1:100_000]
end

foo(1, 2.5) # type UNSTABLE -> ‘a * i’ 1is either 'Int64’ or ‘Floatéd’

julia> [@btime foo(1,2.5)]
43.200 ps (2 allocations: 781.30 KiB)

In the example, type instability will inevitably arise if [x] and [y] have different types. Note that type
promotion is of no help here. The reason is that this mechanism only ensures that will be
converted to if [a] is considering that [1] is [Int64]. However, the compiler also
needs to consider the possibility that[a]could be[Int64] in which case[a * i]would be [Int64].

Given this ambiguity, the method instance created must be capable of handling both scenarios. Then,
during runtime, Julia will gather more information to disambiguate the situation, and select the
relevant computation implementation.

TYPE STABILITY WITH VECTORS




Vectors in Julia are formally defined as collections of elements sharing a homogeneous type. Since
operations based on vectors ultimately handle individual elements, type stability is contingent on
whether the type of their elements is concrete.

In this context, it's important to distinguish between the type of the object and of its elements. This is
because vectors having elements with a concrete type are themselves concrete, but elements with

abstract types will still give rise to vectors with concrete types. This is clearly observed with

Vector{Any}| a concrete type comprising elements with the abstract type [Any].

Before the analysis of specific scenarios, we start by considering type conversion applied to vectors.
This mechanism prevents the mix of types when vectors are defined.

TYPE PROMOTION AND CONVERSION

By definition, vectors require all their elements to share the same type. This means that if you mix

elements with disparate types, such as [Sstring| and [Int64| Julia will infer the vector's type as
vector{Any} | Despite this, there are cases where elements can be converted to a common type, such
as when mixing [Float64]and [Int64].

The following example shows this mechanism in an assignment, where the vector is not type
annotated. In this case, all elements are converted to the most general type among the values
included.

x = [1, 2, 2.5] # automatic conversion to ‘Vector{Floaté64}’

julia>
3-element Vector{Float64}:
1.0

2.0
2.5

y = [1, 2.0, 3.0] # automatic conversion to 'Vector{Floaté6u}'

julia>
3-element Vector{Float64}:
1.0

0
0

2.
3.

When assignments are instead declared with type-annotations and values are of different types, Julia
will attempt to perform a conversion. If possible, this ensures that the assigned values conform to the
declared type.



x1 = [1, 2.0, 3.0] # automatic conversion to
"Vector{Floaté6d}"'

x2::Vector{Int6ed} =yl # conversion to 'Vector{Intéu}’

julia>
3-element Vector{Number}:
1.0

2.0
2.5

yl = [1, 2, 2.5] # automatic conversion to
"Vector{Floaté64}"'

y2::Vector{Number} = vyl # 'y2' is still 'Vector{Number}'

julia>

3-element Vector{Number}:
1.0

0

5

2.
2.

nr_elements = 3

z = Vector{Any}(undef, nr_elements) # "Vector{Any}' always
z =1

julia>

3-element Vector{Any}:

1

1

1

TYPE INSTABILITY

When evaluating type stability with vectors, two forms of operations must be considered. The first one
involves operations that manipulate individual elements, such as [x[i]] This scenario is analogous to
the case of scalars, and therefore type stability follows the same rules.

The second scenario involves functions operating on the entire vector. In this case, type stability
requires that vectors have elements with a concrete type. Note that this condition isn't sufficient to
guarantee type stability, which ultimately depends on how the function implements the operation
executed.

Nevertheless, packages tend to provide optimized versions of functions. Consequently, functions are
typically type stable when users provide vectors with elements of a concrete type. For instance, this is
illustrated below by the function [sum], which adds all elements in a vector.

x1::Vector{Int} = [1, 2, 3]

sum(x1) # type stable




x2::Vector{Inted} = [1, 2, 3]
sum(x2) # type stable
x3::Vector{Floateu} = [1, 2, 3]

H*

sum(x3) type stable

xt4: :BitVector

[true, false, true]

*

sum(x4) type stable

In contrast, the following vectors have elements with abstract types, which result in type instability.

x5::Vector{Number} = [1, 2, 3]

sum(x5) # type UNSTABLE -> ‘sum’ must consider all possible subtypes of
‘Number'

x6: :Vector{Any} = [1, 2, 3]

sum(x6) # type UNSTABLE -> ‘sum' must consider all possible subtypes of ‘Any’
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INTRODUCTION

Variables can be categorized as local or global according to the code block in which they live: global
variables can be accessed and modified anywhere in the code, while local variables are only
accessible within a specific scope. In the context of this section, the scope of interest is a function, so
local variables will exclusively refer to function arguments and variables defined within the function.

The distinction between local and global variables is especially relevant for this chapter since global
variables are a common source of type instability. The issue arises because Julia's type system
doesn't assign specific concrete types to global variables. As a result, the compiler is forced to consider
multiple possibilities for any computation involving these variables. This limitation prevents
specialization, leading to reduced performance.

The current section explores two approaches to working with global variables: type-annotations and
constants. Defining global variables as constants is a natural choice when values are truly fixed, such
as in the case of [m_= 3.14159]. More broadly, constants can be used in any scenario where they
remain unmodified throughout the script. Compared to type annotations, constants offer better
performance, as the compiler gains knowledge of both the type and value, rather than just the type.
This feature allows for further optimizations, effectively making the behavior of constants within a
function indistinguishable from that of a literal value. '

Warning! - You Should Still Wrap Code in a Function

Even if you implement the fixes proposed for global variables, optimal
performance still calls for wrapping tasks in functions. The reason is
that functions implement additional optimizations that aren't
possible in the global scope.

WHEN ARE WE USING GLOBAL VARIABLES?

Before exploring approaches for handling global variables, let's first identify scenarios in which global
variables arise. To this end, we present two cases, each represented in a tab below. The first one
considers the simplest scenario possible, where operations are performed directly in the global scope.
For its part, the second one illustrates a more nuanced case, where a function accesses and operates
on a global variable.


https://alfaromartino.github.io/

The third tab serves as a counterpoint, implementing the same operations but within a self-contained
function. By definition, self-contained functions exclusively operate with locally defined variables.
Thus, the comparison of the last two tabs highlights the performance lost by relying on global
variables.

# all operations are type UNSTABLE (they're defined in the global scope)
X =2

y:2*x
z = log(y)
X =2

function foo()

y:2*x

z = log(y)

return z
end

@code_warntype foo() # type UNSTABLE

function foo(x)

y =2 % X

z = log(y)

return z
end

@code_warntype foo(x) # type stable

Self-contained functions offer advantages that extend beyond performance gains: they enhance
readability, predictability, testability, and reusability. These benefits were briefly considered in a
previous section, and come from an interpretation of functions as embodying a specific task.

Among other benefits, self-contained functions are easier to reason about, as understanding their
logic doesn't require tracking variables across the entire script. Moreover, a function's output depends
solely on its input parameters, without any dependence on the script's state regarding global
variables. This makes self-contained functions more predictable, additionally simplifying the code
debugging process. Finally, by acting as a standalone program with a clear well-defined purpose, self-
contained functions can be reapplied for similar tasks, reducing code duplication and facilitating code
maintainability.

ACHIEVING TYPE STABILITY WITH GLOBAL VARIABLES
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The previous subsection emphasized the benefits of self-contained functions, providing compelling
reasons to avoid global variables. Nonetheless, global variables can still be highly convenient in certain
scenarios. For instance, this is the case when we work with true constants. Considering this, next we
present two approaches that let us work with global variables, while addressing their performance
penalty.

CONSTANT GLOBAL VARIABLES
Declaring global variables as constants requires adding the keyword before the variable's

name, such as in [const x = 3] This approach can be applied to variables of any type, including

collections.

5
2 * a

const a
foo()

@code_warntype foo() # type stable

const b = [1, 2, 3]

foo() = sum(b)
@code_warntype foo() # type stable
( .
Warning!

Global variables should only be declared constants if their value
will remain unchanged throughout the script. Although it's possible
to redefine constants, this option was only introduced to facilitate
testing during interactive use, thereby avoiding the need to restart a
Julia session for each new constant value. Importantly, the use of this
option assumes that all dependent functions are re-declared when the
constant's value is modified: any function that isn't redefined will still
rely on the constant's original value. This is why you should re-run the
entire script if you absolutely need to reassign the value of a
constant.

To illustrate the potential consequences of overlooking this practice,
let's compare the following code snippets that execute the function
[foo] Both define a constant value of [x=1] which is subsequently
redefined as [x=2]| The first example runs the script without re-
executing the definition of in which case the value returned by
is still based on [x = 1]. In contrast, the second example emulates
the re-execution of the entire script. This is achieved by rerunning
[foo s definition, thus ensuring that relies on the updated value of

[x]




const x = 1

foo() = x

foo() # it gives 1

X =2

foo() # it still gives 1

const x =1

foo() = x

foo() # it gives 1
X =

foo() = x

foo() # it gives 2

TYPE-ANNOTATING A GLOBAL VARIABLE

The second approach to address type instability involves asserting a concrete type for a global variable.
This is done by including the operator | : : | after the variable's name (e.g., [x: : Int64]).

x::Inté6d =5

foo() =2 % X
@code_warntype foo() # type stable
y::Vector{Floateud} = [1, 2, 3]

foo() = sum(y)
@code_warntype foo() # type stable
z::Vector{Number} = [1, 2, 3]

foo() = sum(z)
@code_warntype foo() # type UNSTABLE

Note that simply declaring a global variable with an abstract type won't resolve the type instability
issue.

DIFFERENCES BETWEEN APPROACHES

The two approaches presented for handling global variables have distinct implications for both code
behavior and performance. The key to these differences lies in that type-annotations assert a
variable's type, while constants additionally declare its value. Next, we analyze each
consequence.



DIFFERENCES IN CODE

Unlike the case of constants, type-annotations allow you to reassign a global variable without

unexpected consequences. This means you don't need to re-run the entire script when redefining the

variable.
x::Int6d = 5
foo() =2 % X
foo() # output is 10
X =2
foo() =2 % X
foo() # output is 4

DIFFERENCES IN PERFORMANCE

Type-annotated global variables are more flexible, as we only need to declare their types without

committing to a specific value. However, this flexibility comes at the cost of performance, since they
prevent certain optimizations that hold with constants. Such optimizations are feasible because
constants not only provide information about their types, but also act as a promise that their value will
remain fixed throughout the code. Within a function, this feature allows constants to behave like literal
values embedded directly in the code. Consequently, the compiler can potentially replace certain
expressions with their resulting outcome.

The following code demonstrates a scenario where this occurs. It consists of an operation that can be
pre-calculated if the global variable's value is known. Thus, declaring the global variable as a constant
enables the compiler to replace this operation by its result, making it equivalent to a hard-coded
value. On the contrary, merely type-annotating the global variable only specializes code for the type
provided. To starkly reveal the effect, we'll call this operation in a for-loop.

const k1 = 2

function foo()
for _ in 1:100_000
2"K1
end
end

julia> [@btime foo()]
0.800 ns (0 allocations: 0 bytes)




k2::Inted = 2

function foo()
for _ in 1:100_000
2"k2
end
end

julia> [@btime foo() |
115.600 ps (0 allocations: 0 bytes)

Remark

Even without declaring a variable as a constant, the compiler could still
recognize the invariance of some operations and perform optimizations
accordingly. To illustrate this, suppose we want to reexpress each
element of [x| as a proportion relative to the sum of the elements. A
naive approach would involve a for-loop with incorporated into
the for-loop body, resulting in the repeated computation of [sum(x) |. If,
on the contrary, we calculate shares through [x ./ sum(x)| the
compiler is smart enough to recognize the invariance of [sum(x) | across

iterations, therefore proceeding to its pre-computation.

X = rand(100_0060)

function foo(x)
y = similar(x)

for i in eachindex(x,y)
y[i] = x[i] / sum(x)
end

return y
end

julia> [@btime foo($x)]
633.245 ms (2 allocations: 781.30 KiB)

X = rand(100_000)

foo(x) = x ./ sum(x)

julia> [@btime foo($x)]
49.400 ps (2 allocations: 781.30 KiB)




rand(100_000)
const sum_x = sum(x)

X

foo(x) = x ./ sum_x

julia> [@btime foo($x) |
41.500 ps (2 allocations: 781.30 KiB)

FOOTNOTES

! Literal values refer to values expressed directly in the code (e.g., | "hello"| or|true)), in contrast to values
coming from a variable input.
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INTRODUCTION

This section presents an approach to mitigating type instability based on the so-called barrier
functions. These are defined as type-stable functions embedded within a type-unstable function,
where variables having uncertain types are passed as arguments. By doing so, the compiler is
prompted to infer a concrete type for the variables, effectively creating a "barrier" that prevents the
spread of type instability to subsequent operations.

A key benefit of this approach is that barrier functions are agnostic to the underlying cause of
type instability, making them widely applicable.

(
Warning! - Barrier Functions Should Be Considered as a Second Option

Typically, barrier functions should be reserved for situations where type
instability is either difficult to fix or inherent to the operations
performed. This is because the original function will still be type
unstable, with different consequences depending on the instability
nature. Considering this, it's best to aim for type-stable code from the
outset, whenever possible.

APPLYING BARRIER FUNCTIONS

To illustrate the technique, let's revisit a type-unstable function from a previous section. This function
defines a variable |y |based on , and subsequently performs an operation involving .

function foo(x)
y = (x < 0) 0 X

[y * i for i in 1:100]

end
@code_warntype foo(1) # type stable
@code_warntype foo(l.) # type UNSTABLE

In the example, [0] is an [Int64] whereas [x] could be either an [Int64] or [Float64] When [x] is an
[Int64] [y] will also be an [Int64] making type stable. However, when [x] is a [Float64] the
compiler can't determine whether [y] will be an or a [Float64] rendering type

unstable.
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Addressing this type instability through a barrier functions requires embedding a type-stable function
into passing as an argument. By doing so, the function will attempt to deduce [y]s type,
allowing the compiler to use this information for subsequent operations. The example below in

particular defines as a barrier function. '

operation(y) = [y * i for i in 1:100]

function foo(x)

y=(x<0)? 0 : x
operation(y)
end
@code_warntype operation(l) # barrier function is type stable

@code_warntype operation(l.) # barrier function is type stable

@code_warntype foo(1) # type stable

@code_warntype foo(l.) # barrier—function solution

With the introduction of the barrier function [operation] the variable[y]in can still be either
an or a [Float64] Nevertheless, this ambiguity no longer matters, as [operation(y)] will

determine the type of [y] before the array comprehension is executed. As a result, the expression [ [y

* i for i in 1:100]| will be computed using a method specialized for the specific type of ,

ensuring type stability.

r Warning!

Barrier Functions should solve the type instability before the type
unstable operation is executed. Otherwise, we're back to the original
issue, where the compiler has to check [y]s type at each iteration and
select a method accordingly.

For example, in the example below doesn't apply correctly the
barrier-function technique: |y| can be either [Float64| or [Int64] and
|operation(y,i)| only identifies the type inside the for-loop. This
determines that the compiler is forced to check [y]s type at each
iteration of the loop, which is the original problem the barrier function

was intended to solve.

operation(y,i) =y * i

function foo(x)
y=x<0)? 0 : x

[operation(y,i) for i in 1:100]
end

@code_warntype foo(1l) # type stable
@code_warntype foo(l.) # type UNSTABLE




REMARKS ON @CODE WARNTYPE

Functions introducing barrier functions hinder the interpretation of |[@code_warntype |. This is because

barrier functions typically mitigate type instability, rather than completely eliminating it. And even if
the barrier function successfully eliminates the type instability, we could still receive a red warning.

To illustrate this, let's start presenting a scenario where the barrier function completely eliminates the

type instability. Yet, a red warning shows up.

x = ["a", 1] # variable with type 'Any'

function foo(x)
y = x[2]

[y » i for i in 1:100]
end

julia> [@code_warntype foo(x)]

x = ["a", 1] # variable with type 'Any’
operation(y) = [y * i for i in 1:100]

function foo(x)
y = x[2]

operation(y)
end

julia> ]@codefwarntype foo(x)‘

In this example, [y]is defined from an object with type [Vector{Any}|. This leads to a red warning, as
has type and therefore the compiler can't infer a concrete type for [y] However, no
operation is involved at that point, as we're only performing an assignment. Since the only operation
performed uses a barrier function, the lack of type information is inconsequential. Therefore, type
instability is never impacting performance after introducing a barrier function.

In contrast, the example below demonstrates that a barrier function may only alleviate type instability,
rather than eliminate it entirely. In this scenario, the operation is type unstable, forcing the
compiler to generate code for each possible concrete type of [x[2]]. Nonetheless, this operation has a
negligible performance impact on [foo] justifying why the barrier function only targets the more
demanding operation.



x = ["a", 1] # variable with type 'Any’

function foo(x)
y = 2 % x[2]

[y # i for i in 1:100]
end

julia> |[@code_warntype foo(x) |

x = ["a", 1] # variable with type 'Any'’
operation(y) = [y # i for i in 1:100]

function foo(x)
y = 2 % x[2]

operation(y)
end

julia> [@code_warntype foo(x) |

x = ["a", 1] # variable with type 'Any’
operation(y) = [y * i for i in 1:100]

function foo(z)
y:2*2

operation(y)
end

julia> |@code_warntype foo(x) |

Notice that whether a barrier function is effective in solving performance issues ultimately depends on
how the function is applied. In the given example, the barrier-function solution would be sufficient if
is called only once. Instead, if [foo] is eventually called in a tight loop, the type instability of [2 *
@ would be incurred multiple times. In such cases, additionally addressing the type instability of E
* x[2]]could lead to substantial performance benefits.

FOOTNOTES

' In this particular example, there's an easier solution for the type instability, where [] is substituted with [zero(x) |.
The function has been designed to return the null element for the type identified of x|
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INTRODUCTION

A function is considered type stable when, given the types of its arguments, the compiler can
accurately predict single concrete types for its expressions. This definition, while universal, takes on
different forms when applied to specific objects. So far, we've exclusively concentrated on scalars and
vectors, whose conditions for type stability are relatively straightforward.

In this section, we begin the analysis of type stability for other data structures. This is done by covering
tuples. Guaranteeing type stability with tuples is more nuanced compared to vectors, as their type
characterization demands more information. Its exploration will challenge our understanding of type
stability, demanding a clear grasp of its definition and subtleties.

Warning! - Tuples Are Only Suitable For Small Collections

Remember that tuples should only be used for collections that comprise
a few elements. Using them for large collections will result in significant
performance degradation or directly trigger fatal errors.

COMPARING TUPLES AND VECTORS

Tuples and vectors are the most ubiquitous forms of collections in Julia, with tuples playing a vital role
for two reasons. Firstly, tuples are more performant for small objects, as they avoid the overhead of
memory allocation. This feature will be expanded on when we explore static vectors, which are
essentially tuples that can be handled as vectors. The second reason is that tuples automatically
encompass the case of named tuples, which are merely tuples having symbols as keys instead of
indices.

In comparison to vectors, tuples possess a more intricate type system. To appreciate this, let's
compare the information needed for each type description.

Vectors represent collections of elements sharing a homogeneous type, additionally allowing for
varying number of elements. Thus, the information needed to describe the types of vectors is

relatively minor. For instance, a type like [vector{Float64} | establishes that all elements must have
type [Float64], without any restriction on number of elements to be contained.

For their part, tuples are fixed-size collections that can accommodate heterogeneous types. This makes
the characterization of a tuple's type more demanding, requiring both the number of elements and

the type of each element. For instance, the variable [tup = ("hello", 1)]has type [Tuple{String,




Int64} |, indicating that the first element has type and the second one[Int64]. Furthermore, it

implicitly sets the number of elements to two, as there's no possibility of appending or removing
elements.

The fact that the number of elements is part of the type becomes clear when tuples contain [N

elements of the same type [T]. For this case, Julia provides the convenient alias [Ntuple{N, Float64}],

which is just syntactic sugar for[Tuple{T, T,...,T}|where[T]appears[N]times. '

In the following, we show that the choice between tuples and vectors may have different implications
for type stability.

SLICES OF HETEROGENEOUS TUPLES CAN STILL BE TYPE STABLE

The type provides explicit information about each element's type. In contrast, vectors
necessarily hold elements with a uniform type, entailing that mixing concrete types leads Julia to

choose the smallest type that can encompass all of them.

In particular, vectors whose elements' types are extremely different require an abstract type to
characterize all of them. In the worst case scenario, Julia could define as the type.
Defining this type propagates to slices, which will inherit the type of the parente vector. Consequenly,
operations on these slices will result in type instability. Such a feature constrasts with operations on
slices of tuples, which identify a specific type for each element.

TUPLE

tup = (1, 2, "hello") # type is ‘Tuple{Intéd, Int64d, String}’
foo(x) = sum(x[1:2])

@code_warntype foo(tup) # type stable (output is 'Intéed’)
VECTOR

vector = [1, 2, "hello"] # type is ‘Vector{Any}'

foo(x) = sum(x[1:2])

@code_warntype foo(vector) # type UNSTABLE

Notice that type promotion could solve this issue. Through this mechanism, Julia attempts to convert
each element of a vector into a common concrete type, thus avoiding the need of abstract types like
[Any | This is what occurs below, where numbers holding different types are converted to the most
general concrete type.

TUPLE
tup

(1, 2, 3.5) # type is ‘Tuple{Intéd, Int64, Float64}’

foo(x) = sum(x)

@code_warntype foo(tup) # type stable (output returned is 'Intéd’)




VECTOR
vector = [1, 2, 3.5] # type is ‘Vector{Floatéd}' (type promotion)

foo(x) = sum(x)

@code_warntype foo(vector) # type stable (output returned is 'Floatéld')

TUPLES CONTAIN MORE INFORMATION THAN VECTORS

Given the differences in type information, conversions between tuples and vectors can pose several

challenges for type stability. To see this, let's start with the simplest case, where a tuple is converted
into a vector. The conclusions drawn from this case are straightforward, as they're essentially a
corollary from the previous analysis: type stability will hold when the tuple contains type-
homogeneous elements or when the types are heterogeneous but can be promoted to a common

type.

For the examples, recall that each type automatically creates a function that transforms variables into
that type. In particular, below we introduce the function with the purpose of converting
variables.

TYPE-HOMOGENEOUS TUPLES
tup = (1, 2, 3)

**

‘Tuple{Intéd, Inté6d, Inté6d}’ or just 'NTuple{3, Inteu}’

function foo(tup)
x = Vector(tup) # 'x' has type ‘Vector(Inté4)}'
sum(x)

end

**

@code_warntype foo(tup) type stable

TYPE PROMOTION
tup = (1, 2, 3.5)

**

‘Tuple{Int64, Inté6d, Float64}’

function foo(tup)
x = Vector(tup) # 'x' has type 'Vector(Float64)}'
sum(x)

end

*

@code_warntype foo(tup) type stable




TYPE-HETEROGENEOUS TUPLES
tup = (1, 2, "hello") # 'Tuple{Intéed, Intéd, String}’

function foo(tup)

x = Vector(tup) # 'x' has type ‘Vector(Any)}'
sum(x)

end

@code_warntype foo(tup) # type UNSTABLE

For its part, creating a tuple from a vector will inevitably cause type instability, regardless of the
vector's characteristics. The reason is that vectors don't store information about the number of
elements they contain. Consequently, the compiler must treat tuples as having a variable number of
arguments, with each possible number corresponding to a different concrete type.

VECTOR WITH NON-PRIMITIVE TYPES
x = [1, 2, "hello"] # 'Vector{Any}' has no info on each individual type

function foo(x)
tup = Tuple(x) # 'tup' has type ‘Tuple’

sum(tup[1:2])
end

@code_warntype foo(x) # type UNSTABLE

VECTOR WITH PRIMITIVE TYPES
x =1[1, 2, 3] # '"Vector{Inté4}' has no info on the number of elements

function foo(x)
tup = Tuple(x) # 'tup' has type ‘Tuple{Vararg(Inted)}' ('Vararg' means
"variable arguments")

sum(tup[1:2])
end

@code_warntype foo(x) # type UNSTABLE

ADDRESSING VARIABLE ARGUMENTS: DISPATCH BY VALUE

A key takeaway from the previous subsection is that defining tuples from vectors invariably introduce
type instability. A simple remedy for this is to convert tuples outside the function, which we then pass
as function arguments. This is demonstrated in the code snippet below.



TUPLE AS FUNCTION ARGUMENT

[1, 2, 3]
Tuple(x)

X

tup

foo(tup) = sum(tup[1l:2])

@code_warntype foo(tup) # type stable

The approach presented should be your first option when transforming vectors to tuples.
Nonetheless, there may be scenarios where defining the tuple inside the function is unavoidable. In
such cases, there are a few alternatives that can be implemented.

Note first that simply passing the vector's number of elements as a functoin argument doesn't solve
the issue. The reason is that the compiler generates method instances based on information about
types, not values. This means that a function argument like merely informs the compiler
that the number of elements can be described as an object with type [Int64] without providing any
additional insight.

Instead, one effective solution is to define the tuple's length using a literal value, as demonstrated
below.

NOT A SOLUTION
X = [1, 2, 3]

function foo(x)
tup = NTuple{length(x), eltype(x)}(x)

sum(tup)
end

@code_warntype foo(x) # type UNSTABLE

INFLEXIBLE SOLUTION
X = [1, 2, 3]

function foo(x)
tup = NTuple{3, eltype(x)}(x)

sum(tup)
end

@code_warntype foo(tup) # type stable

The downside of this solution is that it defeats the purpose of having generic code, as it restricts the
function to tuples of a single predetermined size. To eliminate the type instability without constraining
functionality, we need to introduce a more advanced solution. This is based on a technique known as
dispatch by value. Since this approach is more complex to implement, / recommend using it only when
passing the tuple as a function argument is unfeasible.



Next, we lay out the principles of dispatch by value, and then apply the technique to the specific case
of tuples.

DEFINITING DISPATCH BY VALUE

Dispatch by value enables passing information about values to the compiler. Implementing this

feature, nonetheless, requires a workaround, since the compiler only gathers information about types.
The hack consists of creating a type that stores values as type parameters. In the case of tuples, this
type parameter is simply the vector's number of elements.

The functionality is implemented via the built-in type [val], whose use is best explained through an
example. Suppose a function and a value [a] that you wish the compiler to know. The technique

requires defining with a type-annotated argument having no name, | ::val{a}| After this, you
must call passing an argument[val(a) | which instantiates a type with parameter[a].

To illustrate the use of [vall], we revisit an example included in previous sections. This considers a
variable [y] that could be an [Int64] or [Float64] contingent upon a condition. The ambiguity of [y]s
type is then transmitted to any subsequent operation, leading to type instability.

Dispatch by value is implemented by defining the condition as a type parameter of [val]. In this way,

the compiler will receive information about whether condition is|true| or|false| and therefore know

's type. This makes it possible to specialize its operations.

TYPE UNSTABLE

function foo(condition)
y = condition ? 1 : 0.5 # either 'Inté4’ or 'Floaté64d’

[y # i for i in 1:100]

end
@code_warntype foo(true) # type UNSTABLE
@code_warntype foo(false) # type UNSTABLE

SOLUTION "VAL"

function foo(::Val{condition}) where condition
y = condition ? 1 : 0.5 # either 'Int64’ or 'Floaté64d’

[y * i for i in 1:100]
end

@code_warntype foo(Val(true)) # type stable
@code_warntype foo(Val(false)) # type stable

Warning!
The function argument must be defined with [{}] but called with

[O] This is because types define their parameters with [{}] while
instances of types require functions.



DISPATCHING BY VALUE WITH TUPLES

Let's now revisit the conversion of vectors to tuples. As we previously discussed, type instability arises
because vectors don't store the size as part of their type information, leaving the compiler without

sufficient information to determine the tuple's type.

Dispatch by value provides a solution to this issue: by passing the vector's length as a type parameter,

the function call becomes type stable.

TYPE UNSTABLE
x = [1, 2, 3]

function fool(x, N)
tuple_x = NTuple{N, eltype(x)}(x)

2 .+ tuple_x
end

@code_warntype foo(x, length(x)) # type UNSTABLE

SOLUTION "VAL"
x = [1, 2, 3]

function foo(x, ::Val{N}) where N
tuple_x = NTuple{N, eltype(x)}(x)

2 .+ tuple_x
end

@code_warntype foo(x, Val(length(x))) # type stable

FOOTNOTES

- Don't confuse as an abbreviation for the type [NamedTuples] The "N" in the former case is referring to a

number "N" of elements.
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INTRODUCTION

Functions in Julia are first-class objects, a concept also referred to as first-class citizens. This means
that functions can be treated like any other variable, thus allowing for vectors of functions, functions
returning other functions, and more.

In particular, the property makes it possible to define higher-order functions, which are functions
that take another function as an argument. We've already encountered several examples of higher-
order functions, often in the form of anonymous functions passed as arguments. A classic example of
a higher-order function is [map(<function>, <collection>)], given that is one of its
arguments. Throughout the explanations, we follow common terminology and refer the function

passed as an argument as the callback function.

In this section, we'll examine conditions under which higher-order functions are type-stable. As we'll
see, these functions present some challenges for specializing their computation method.

FUNCTIONS AS ARGUMENTS: THE ISSUE

For exploring type stability, a distinctive feature of functions is that each function defines its own unique
concrete type. In turn, this concrete type is a subtype of an abstract type called [Function], which
encompasses all possible functions defined in Julia. This type system creates challenges when
specializing the computation method of higher-order functions, as it can potentially lead to a
combinatorial explosion of methods, with a unique method generated for each callback function.

To address this issue, Julia takes a conservative approach, often choosing not to specialize the
methods of high-order functions. The performance in such cases can be severely degraded, as the
execution runtime would become similar to performing operations in the global scope.

Taking this into account, it's important to pinpoint the scenarios where specialization is inhibited and
monitor its consequences. If it occurs that performance is severely impaired, there are still ways to
enforce specialization. In the following section, we explore several techniques for doing so.

Warning!
Exercise caution when inducing specialization. Overly aggressive

specialization can degrade performance severely, explaining why Julia's
default approach is deliberately conservative. In particular, you should
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l avoid specialization when your script repeatedly calls a high-order
1

function with many unique functions.

AN EXAMPLE OF NO SPECIALIZATION

To illustrate when higher-order functions don't specialize, let's consider a specific scenario where we
sum the transformed elements of a vector [x] The only requirement we impose is that the
transforming function should be generic, allowing us to possibly apply different functions for the
transformation.

Below, we implement this operation through a higher-order function [foo] This first uses to
transform [x] through some function [f], and then applies the function to add the transformed
elements. For demonstrating how works, we also call it with the function as its specific
transformed function.

X rand(100)

function foo(f, x)
y = map(f, x)

sum(y)
end

julia> ]@Codefwarntype foo(abs,x)‘

Although we can show that isn't specialized, [@code_warntype| fails to detect any type-
stability issues. This is a consequence of |@code_warntype| evaluating type stability under the

assumption that specialization is attempted. In our example, this assumption doesn't hold and therefore

|@code_warntype |is of no use.

The specific reason for this behavior is that Julia avoids specialization when a callback function
isn't explicitly called within the function. In the example, the function [f] only enters as an

argument of [map], but there's no explicit line calling[f].

To obtain indirect evidence regarding the lack of specialization, we can compare the runtimes of the
original function with a version that explicitly calls ],



X = rand(100)

function foo(f, x)
y = map(f, x)

sum(y)
end

julia> | foo(abs, x)

48.447

julia> [@btime foo(abs, $x)]
195.579 ns (3 allocations: 928 bytes)

x = rand(100)

function foo(f, x)
y = map(f, x)
(1) # irrelevant computation to force specialization

sum(y)
end

julia> | foo(abs, x)

48.447

julia> [@btime foo(abs, $x)]
45.745 ns (1 allocation: 896 bytes)

The comparison lays bare a significant reduction in time when is added. Furthermore, there's
also a notable decrease in memory allocations. As we'll demonstrate when exploring the subject,
excessive allocations often serve as a telltale sign of type instability.

FORCING SPECIALIZATION

Explicitly calling the function to circumvent the no-specialization issue isn't optimal, since it introduces
an unnecessary computation. Fortunately, alternative solutions exist to address the problem. One
approach is to type-annotate , which provides Julia with a hint to specialize. Another solution is to
wrap the function in a tuple and then call it. This ensures the identification of the function's type, as
tuples identify a concrete type for each element.

Below, we outline both approaches.



x = rand(100)

function foo(f::F, x) where F
y = map(f, x)

sum(y)
end

julia> | foo(abs, x)

48.447

julia> [@btime foo(abs, $x)]
46.686 ns (1 allocation: 896 bytes)

x = rand(160)
f_tup = (abs,)

function foo(f_tup, x)

y = map(f_tup[1], x)

sum(y)
end

julia> | foo(f_tup, x)|

48.447

julia> [@btime foo($f_tup, $x) |
45.101 ns (1 allocation: 896 bytes)

FOOTNOTES

' For discussions about the issue of excessive specialization, see here and here.


https://docs.julialang.org/en/v1/devdocs/functions/#compiler-efficiency-issues
https://discourse.julialang.org/t/be-less-aware-of-when-julia-avoids-specializing/109111/5

8h. Gotchas for Type Stability

Martin Alfaro

PhD in Economics

INTRODUCTION

This section considers scenarios where type instabilities aren't immediately obvious. For this reason,
we dub them as "gotchas". We also provide recommendations for addressing them. To make the
section self-contained, we revisit some examples of type instability that were covered previously.

GOTCHA 1: INTEGERS AND FLOATS

When working with numeric scalars, it's essential to remember that | Int64|and [Float64 | are distinct

types. Mixing them can inadvertently introduce type instability.

To illustrate this case and how to handle it, consider a function [foo]. This takes a numeric variable [x
as its argument and performs two tasks. Firstly, it defines a variable |y | by transforming | x| in a way
that all negative values are replaced with zero. Secondly, it executes an operation based on the

resulting[y].

The following example illustrates two implementations of [foo]. The first one suffers from type
instability, while the second provides a revised implementation that addresses this issue.

function foo(x)
y=(x<0)? 0 : x

return [y * i for i in 1:100]

end
@code_warntype foo(1l) # type stable
@code_warntype foo(l.) # type UNSTABLE

function foo(x)
y = (x<0)? zero(x) : x

return [y * i for i in 1:100]
end

@code_warntype foo(1l) # type stable
@code_warntype foo(1l.) # type stable



https://alfaromartino.github.io/

The first implementation uses the literal [0], which has type [Int64]. If [x] is also [Int64] no type
instability arises. However, if [x] is [Float64], the compiler must consider that [y] could be either

[Int64]or|Float64] thus causing type instability.

Julia can handle combinations of [Int64| and |Float64| quite effectively. Therefore, the latter type

instability wouldn't be a significant issue if the operation involving calls only once. Indeed,

|@code_warntype | would only issue a yellow warning that therefore could be safely ignored. However,

in our example repeatedly performs an operation that involves , incurring the cost of type

instability multiple times. As a result,

@code_warntype |issues a red warning, indicating a more serious

performance issue.

The second tab proposes a solution based on a function that returns the zero element corresponding
to the type of . This approach can be extended to other values by using either the function
[convert(typeof(x), <value>)|or|oftype(x, <value>)| Both convert to the same type as

[x] For instance, below we reimplement [foo |, but using the value [5]instead of [@]

function foo(x)
y=(x<0)? 5 : x

return [y * i for i in 1:100]

end
@code_warntype foo(1l) # type stable
@code_warntype foo(1l.) # type UNSTABLE

function foo(x)
y = (x < 0) ? convert(typeof(x), 5) : x

return [y * i for i in 1:100]

end
@code_warntype foo(1) # type stable
@code_warntype foo(l.) # type stable

function foo(x)
y = (x < 0) ? oftype(x, 5) : x

return [y * i for i in 1:100]

end
@code_warntype foo(1) # type stable
@code_warntype foo(l.) # type stable

GOTCHA 2: COLLECTIONS OF COLLECTIONS



When working in data analysis, collections of collections emerge naturally. An example of this data
structure is given by the package, which defines a table with each column representing a
different variable. As we haven't introduced this package, we'll consider a more basic scenario

involving a vector of vectors, represented by the type |Vector{vector}| This exhibits a similar

structure, and also the same potential issues regarding type stability.

Essentially, the issue arises because, by not constraining the types of its inner vectors, a collection of

collections like | vector{Vector} | offers a high degree of flexibility. This flexibility is particularly valuable

in data analysis, where datasets often comprise diverse columns that may contain disparate data

Float64

types (e.g., [String], , | Int64)). However, it also comes at a cost: the type |Vector{Vector}

only guarantees that its elements are vectors, without providing any information about the concrete
types they contain. As a result, when a function operates on one of these inner vectors, the type
system is unable to infer the concrete type of the data, leading to type instability.

To illustrate this scenario, suppose a vector comprising multiple inner vectors. Moreover,
consider a function that takes as its argument, and operates on one of its inner vectors
[vec2| The first tab below shows that this case leads to type instability. The simplest solution is
presented in the second tab, and consists of including a barrier function that takes the inner vector
as its argument. The technique rectifies the type instability, as the barrier function attempts to
identify a concrete type for [vec2]. Note that the barrier function is defined in-place). This implies that

the value of [vec2], and hence of[data] is updated when is executed.

[nau’ ||b||, "C"] , VeC2 — [1, 2' 3]
data = [vecl, vec2]

vecl

function foo(data)
for i in eachindex(datal[2])
datal2][i] = 2 * i

end
end
@code_warntype foo(data) # type UNSTABLE
vecl = ["a", "b", "c"] ; vec2 = [1, 2, 3]

data = [vecl, vec2]
foo(data) = operation!(datal[2])

function operation!(x)
for i in eachindex(x)
x[i] = 2 % i
end
end

@code_warntype foo(data) # barrier-function solution



http://localhost:8000/PAGES/05g_inplace_functions/

GOTCHA 3: BARRIER FUNCTIONS

Barrier functions are an effective technique to mitigate type instabilities. However, it's essential to
remember that the parent function may remain type unstable. When this is the case, if we fail to
resolve the type instability before executing a repeated operation, the performance cost of the type
instability will be incurred multiple times.

To illustrate this point, let's revisit the last example involving a vector of vectors. Below, we present
two incorrect approaches to using a barrier function, followed by a demonstration of its proper
application.

[nau, ||b||' "C"] ’ VeC2 = [1, 2, 3]
[vecl, vec2]

vecl
data

operation(i) = (2 % i)

function foo(data)
for i in eachindex(datal[2])
data[2][i] = operation(i)
end
end

@code_warntype foo(data) # type UNSTABLE

vecl = ["a", "b", "c"] ; vec2 = [1, 2, 3]
data

[vecl, vec2]
operation!(x,i) = (x[i] = 2 * i)
function foo(data)

for i in eachindex(datal[2])
operation!(data[2], i)

end
end
@code_warntype foo(data) # type UNSTABLE
vecl = ["a", "b", "c"] ; vec2 = [1, 2, 3]
data = [vecl, vec2]

function operation!(x)
for i in eachindex(x)
x[i] =2 % i
end
end

foo(data) = operation!(data[2])

@code_warntype foo(data) # barrier—function solution




GOTCHA 4: INFERENCE IS BY TYPE, NOT BY VALUE

Julia's compiler generates method instances solely based on types, without considering the actual
values. To demonstrate this, let's consider the following concrete example.

function foo(condition)
y = condition ? 2.5 : 1

return [y * i for i in 1:100]

end
@code_warntype foo(true) # type UNSTABLE
@code_warntype foo(false) # type UNSTABLE

At first glance, we might erroneously conclude that is type stable: the value of [condition
is so that and therefore [y ] will have type [Float64] However, values don't participate
in multiple dispatch, meaning that Julia's compiler ignores the value of [condition]|when inferring [y]s
type. Ultimately, |y|is treated as potentially being either | Int64|or|Float64 | leading to type instability.

The issue in this case can be easily resolved by replacing [1] by [1.], thus ensuring that [y] is always
[Float64]. More generally, we could employ similar techniques to the first "gotcha", where values are
converted to a specific concrete type.

An alternative solution relies on dispatching by value, a technique we already explored and
implemented for tuples. This technique makes it possible to pass information about values to the
compiler. It's based on the type [val], along with the keyword introduced here.

Specifically, for any function and value [a] that you seek the compiler to know, you need to
include as an argument. In this way, [a]is interpreted as a type parameter, which you can
identify by including the keyword [where]. Finally, we need to call by passing[val(a) ]as its input.

Applied to our example, type instability in emerges because the value of [condition]isn't known
by the compiler. Dispatching by[a]enables us to pass the value of [condition]to the compiler.

function foo(condition)
y = condition ? 2.5 : 1

return [y * i for i in 1:100]
end

@code_warntype foo(true) # type UNSTABLE
@code_warntype foo(false) # type UNSTABLE



http://localhost:8000/PAGES/08f_TS-tuples/#addressing_variable_arguments_dispatch_by_value
http://localhost:8000/PAGES/08f_TS-tuples/#addressing_variable_arguments_dispatch_by_value
http://localhost:8000/PAGES/07d_TS-onTypes/#sub_the_keyword_where

function foo(::Val{condition}) where condition
y = condition ? 2.5 : 1

return [y * i for i in 1:100]
end

@code_warntype foo(Val(true)) # type stable
@code_warntype foo(Val(false)) # type stable

GOTCHA 5: VARIABLES AS DEFAULT VALUES OF KEYWORD
ARGUMENTS

Functions accept positional and keyword arguments. In the particular case that functions are defined

with keyword arguments, it's possible to assign default values. However, when these default values
are specified through variables rather than literal values, a type instability is introduced. The reason is
that the variable is then treated as a global variable.

foo(; x) = x
p=1
@code_warntype foo(x=p) #type stable

foo(; x = 1) = x

@code_warntype foo() #type stable

foo(; x = B) = x

p=1
@code_warntype foo() #type UNSTABLE

When setting a variable as a default value is unavoidable, there are still a few strategies you could
follow to restore type stability.

One set of solutions leverages the techniques we introduced for global variables. These include type-

annotating the global variable (Solution 7a) or defining it as a constant (Solution 1b).

Another strategy involves defining a function that stores the default value. By doing so, you can take
advantage of type inference, where the function attempts to infer a concrete type for the default value
(Solution 2).

You can also adopt a local approach, by adding type annotations to either the keyword argument
(Solution 3a) or the default value itself (Solution 3b). Finally, type instability does not arise when
positional arguments are used as default values of keyword arguments (Solution 4).


http://localhost:8000/PAGES/03c_functions/#positional_and_keyword_arguments
http://localhost:8000/PAGES/08d_TS-globalVariables/

All these cases are stated below.

foo(; x = B) = x

const f =1
@code_warntype foo() #type stable

foo(; x = B) = x

B::Int6d =1
@code_warntype foo() #type stable

foo(; x = BO) = x

O =1
@code_warntype foo() #type stable

foo(; x::Intéd = B) = x

B=1
@code_warntype foo() #type stable

foo(; x = B::Int6d) = x

=1
@code_warntype foo() #type stable

foo(B; x = B) = x

B=1
@code_warntype foo(p) #type stable

GOTCHA 6: CLOSURES CAN EASILY INTRODUCE TYPE INSTABILITIES

Closures are a fundamental concept in programming. A typical situation where they arise is when a
function is defined inside another function, granting the inner function access to the outer
function's scope. In Julia, closures explicitly show up when defining functions within a function, but
also implicitly when using anonymous functions within a function.

While closures offer a convenient way to write self-contained code, they can easily introduce type
instabilities. Furthermore, although there have been some improvements in this area, their
surrouding issues have been around for several years. This is why it's crucial to be aware of its subtle
consequences and how to address them.

CLOSURES ARE COMMON IN CODING




There are several scenarios where nesting functions emerges naturally. One such scenario is when
you aim to keep a task within a single self-contained unit of code. For instance, this approach is
particularly useful if a function needs to perform multiple interdependent steps, such as data
preparation (e.g., setting parameters or initializing variables) and subsequent computations based on
that data. By nesting a function within another, you can keep related code organized and contained
within the same logical block, promoting code readability and maintainability.

To illustrate the patterns involved with and without closures, we'll use generic code. This isn't intended
to be executed, but rather to demonstrate the underlying structure of the code. We also suppose a
task that lends itself to nested functions.

function task()
# <here, you define parameters and initialize variables>

function output()

# <here, you do some computations with the variables and parameters>
end

return output()
end

task()

function task()
# <here, you define parameters and initialize variables>

return output(<variables>, <parameters>)
end

function output(<variables>, <parameters>)
# <here, you do some computations with the variables and parameters>

end

task()

Although the approach using closures may seem more intuitive, it can easily introduce type instability.
This occurs under certain conditions, such as:
e Redefining variables or arguments (e.g., when updating a variable in an output)

 Altering the order in which functions are defined

e Utilizing anonymous functions

Each of these cases is explored below, where we refer to the containing function as the outer function
and the closure as the inner function.

WHEN THE ISSUE ARISES

Let's start examining three examples. They cover all the possible situations where closures could

result in type instability, allowing us to identify real-world scenarios where they could emerge.



The first examples reveal that the placement of the inner function could matter for type stability.

function foo()
X =1

bar()

1
X

return bar()
end

@code_warntype foo() # type stable

function foo()
bar(x)
X =1

return bar(x)
end

@code_warntype foo() # type stable

function foo()
bar()
X =1

return bar()
end

@code_warntype foo() # type UNSTABLE

function foo()

bar()::Int6d = x::Inte6ud
x::Inted =1
return bar()
end
@code_warntype foo() # type UNSTABLE

function foo()
x =1

return bar(x)
end

bar(x) = x

@code_warntype foo() # type stable




The second example establishes that type instability arises when closures are combined with
reassignments of variables or arguments. This issue even persists when you reassign the same object
to the variable, including trivial expressions such as . The example also reveals that type
annotating the redefined variable or the closure doesn't resolve the problem.

function foo()

X =1
X =1 #or 'x =x', or 'x = 2'
return x

end

@code_warntype foo() # type stable

function foo()

X =1
X =1 #or 'x = x', or 'x = 2'
bar(x) = X

return bar(x)
end

@code_warntype foo() # type stable

function foo()

X =1
X =1 #or 'x =x', or 'x = 2'
bar() = X

return bar()
end

@code_warntype foo() # type UNSTABLE

function foo()
x::Inted
X =
bar()::Inteu

1
[

::Int6ed

1l
X

return bar()
end

@code_warntype foo() # type UNSTABLE




function foo()
x::Inted =1
bar()::Int6d = x::Int6u
X =1
return bar()
end
@code_warntype foo() # type UNSTABLE
function foo()
bar()::Int6d = x::Inteu
x::Inted =1
X =1
return bar()
end
@code_warntype foo() # type UNSTABLE
function foo()
X =1
X =1 #or 'x =x', or 'x = 2'
return bar(x)
end
bar(x) = x
@code_warntype foo() # type stable

Finally, the last example deals with situations involving multiple closures. It highlights that the order in
which you define them could matter for type stability. The third tab in particular demonstrates that
passing subsequent closures as arguments can sidestep the issue. However, such an approach is at
odds with how code is generally written in Julia.

function foo(x)
closurel(x) = x
closure2(x) closurel(x)

return closure2(x)
end

@code_warntype foo(1l) # type stable




function foo(x)
closure2(x)
closurel(x)

closurel(x)
X

return closure2(x)
end

@code_warntype foo(1l) # type UNSTABLE

function foo(x)
closure2(x, closurel) = closurel(x)
closurel(x) =X

return closure2(x, closurel)
end

@code_warntype foo(1l) # type stable

function foo(x)
closure2(x) = closurel(x)

return closure2(x)
end

closurel(x) = x

@code_warntype foo(1l) # type stable

In the following, we'll examine specific scenarios where these patterns emerge. The examples reveal
that the issue can occur more frequently than we might expect. For each scenario, we'll also provide a
solution that enables the use of a closure approach. Nonetheless, if the function captures a
performance critical part of your code, it's probably wise to avoid closures.

"BUT NO ONE WRITES CODE LIKE THAT"

i) Transforming Variables through Conditionals

x =1[1,2]; p=1

function foo(x, B)
(B<0) & (B =-B) # transform 'B' to use its absolute value

bar(x) = x * B

return bar(x)
end

@code_warntype foo(x, B) # type UNSTABLE




x =1[1,2]; B=1

function foo(x, B)
(B<0) & (B =-B) # transform 'B' to use its absolute value

bar(x,B) = x * B

return bar(x,B)
end

@code_warntype foo(x, B) # type stable

x =[1,2]; B =1

function foo(x, B)
§=(P<0)?-B:B # transform 'B' to use its absolute value

bar(x) = x * &

return bar(x)
end

@code_warntype foo(x, B) # type stable

x =1[1,2]; p=1
function foo(x, B)

B = abs(p) # '6 = abs(B)' is preferable (you should avoid redefining
variables)

bar(x) = x * &

return bar(x)
end

@code_warntype foo(x, B) # type stable

Recall that the compiler doesn't dispatch by value, and so whether the condition holds is irrelevant.

For instance, the type instability would still hold if we wrote instead of [B < 0] Moreover, the
value used to redefine [B]is also unimportant, with the same conclusion holding if you write [ = 8.

ii) Anonymous Functions inside a Function

Using an anonymous function inside a function is another common form of closure. Considering this,
type instability also arises in the example above if we replace the inner function for an
anonymous function. To demonstrate this, we apply with an anonymous function that keeps
all the values in[x]|that are greater than [B].



x =1[1,2]; p=1

function fool(x, B)

(B<0)&& (B =-B) # transform 'B' to use its absolute value
filter(x -> x > B, x) # keep elements greater than 'B'

end

@code_warntype foo(x, B) # type UNSTABLE

x =[1,2]; =1

function foo(x, B)

§=(B<0)?-B:B # define '§' as the absolute value of 'B'
filter(x -> x > §, x) # keep elements greater than 'S’

end

@code_warntype foo(x, B) # type stable

x =1[1,2]; p=1

function foo(x, B)

B = abs(p) # '6 = abs(B)' is preferable (you should avoid redefining
variables)

filter(x -> x > B, x) # keep elements greater than B
end
@code_warntype foo(x, B) # type stable

iii) Variable Updates

function foo(x)

p=20 # or 'B::Int64 = @'
for i in 1:10
B=p+1 # equivalent to 'B += i’
end
bar() = x + B # or 'bar(x) = x + '

return bar()
end

@code_warntype foo(1l) # type UNSTABLE




function foo(x)

B=20

for i in 1:10
B=p+1

end

bar(x,B) = x + B

return bar(x,B)
end

@code_warntype foo(1l)

# type stable

x =1[1,2]; B=1

function foo(x, B)
(1<0) & (B =P
bar(x) = x * B

return bar(x)
end

@code_warntype foo(x, B)

# type UNSTABLE

iv) The Order in Which you Define Functions Could Matter Inside a Function

To illustrate this claim, suppose you want to define a variable [x] that depends on a parameter [B]
However, [B]is measured in one unit (e.g., meters), while [x] requires [8]to be expressed in a different
unit (e.g., centimeters). This implies that, before defining [x], we must rescale [8] to the appropriate

unit.

Depending on how we implement the operation, a type instability could emerge.

function foo(B)
x(B)

rescale_parameter(p)

return x(B)
end

@code_warntype foo(1)

2 % rescale_parameter(p)
B/ 10

# type UNSTABLE




function foo(B)
rescale_parameter(p)

B/ 10

x(B) = 2 * rescale_parameter(p)
return x(B)
end
@code_warntype foo(l) # type stable
FOOTNOTES

' A similar problem would occur if we replaced [e]by[e. |and [x]is an integer.
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INTRODUCTION

In the previous chapter, we began our exploration of high performance in Julia by focusing on type
stability. We now shift our attention to memory allocations, a critical aspect of performance
optimization.

Memory allocations occur whenever a new object is created, involving the reservation of memory
space to store its values. The aspect is crucial for performance, since the approach selected to handle
the process can significantly slow down computations. In particular, memory allocations on the heap,
simply referred to as memory allocations, incur a notable cost due to the additional CPU instructions
required for memory management.

Despite this, the interplay between memory allocation and performance is complex. In fact, reducing
memory allocation is neither necessary nor sufficient for speeding up computations—we'll
present instances where the approach allocating more memory turns out to be faster. This apparent
paradox arises from a trade-off involved when creating a new object: although allocations can lead to
a significant overhead, the resulting objects store their data in contiguous blocks of memory, enabling
the CPU to access information more efficiently.

From a practical perspective, it's essential to closely monitor memory usage if performance is critical.
Excessive memory allocation often serves as a red flag: if two approaches exhibit large differences
in memory allocation, their execution speeds are likely to differ significantly as well.


https://alfaromartino.github.io/

9b. Stack vs Heap

Martin Alfaro
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INTRODUCTION

Memory allocations are a fundamental process in computer programming. This occurs whenever a
new object is created, and involves reserving memory space to store the object's values, typically in
the computer's Random Access Memory (RAM). In turn, RAM is logically divided into two main areas:
the stack and the heap. Importantly, these areas aren't physical locations, but rather conceptual
models that govern how memory is managed.

The distinction is crucial for performance since memory allocations on the heap are a costly operation.
This approach to handle memory requires searching for free memory, tracking memory information,
and freeing unused memory (a process known as garbage collection). Stack allocations, by contrast,
are simpler and therefore more efficient.

The performance difference between stack and heap allocations can be significant, quickly becoming a
major performance bottleneck if the operation is performed repeatedly. This disparity in performance
explains the common convention in programming, including Julia, where memory allocations will
exclusively refer to heap allocations.

In the current section, we begin the exploration of memory allocations, by briefly comparing how the
stack and the heap work.

STACK ALLOCATIONS

In Julia, typical objects stored on the stack include integers, numbers, characters, and small fixed-size
collections like tuples.

Objects on the stack are characterized by having a fixed size, precluding the possibility of dynamically
growing or shrinking in size. These characteristics make allocating and deallocating memory on the
stack extremely efficient.

The primary limitation of the stack is its limited capacity, making it suitable only for objects with a few
elements. Indeed, attempting to allocate more memory than the stack can accommodate will result in
a "stack overflow" error, causing program termination. And, even if an object fits on the stack,

allocating too many elements can significantly degrade performance. '

HEAP ALLOCATIONS



https://alfaromartino.github.io/

Common objects stored on the heap include arrays (such as vectors and matrices) and strings. Unlike
the stack, the heap is designed to allocate and free memory in any order, allowing it to accommodate
larger and more complex data structures. Thus, the heap can handle objects as large as the available
RAM permits, which additionally could grow or shrink dynamically.

While the heap offers greater flexibility than the stack, its more complex memory management comes
at the cost of slower performance. 2 Due to their reduced speed, Chapter 9 will outline approaches to
minimizing heap allocations. Strategies for achieving this includes utilizing the stack whenever
possible, and favoring mutation over the creation of new objects.

FOOTNOTES

- There's no hard and fast rule about how many elements are "too many". Benchmarking is the only reliable way to
determine the performance consequences for each particular case. As a rough guideline, objects with more than
100 elements will certainly suffer from poor performance, while those with fewer than 15 elements are likely to
benefit from stack allocation.

2:To handle the memory of heap-allocated objects, Julia uses what's known as a garbage collector. This mechanism
automatically identifies and frees memory no longer in use, which can be computationally expensive.
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INTRODUCTION

In the previous section, we introduced the fundamentals of memory allocations, highlighting that

objects can be stored on either the heap or the stack. Furthermore, we emphasized the application of
conventional terminology in programming and Julia, where allocations exclusively refer to those on
the heap. This definition also gives rise to the expression that "an object allocates" when the object is
stored on the heap.

The distinction isn't merely to economize on words. Rather, it reflects that heap allocations are the
ones that matter when it comes to performance: they involve a more complex memory management,
which can significantly hinder performance.

In fact, the close relationship between performance and heap allocations can be appreciated through

the macros and [@btime]. To provide a comprehensive measure of performance, they not only
return the total runtime of an operation, but additionally the heap allocations involved.

In the following, we initiate our analysis of memory allocation by categorizing objects into two groups:
those that allocate and those that don't.

NUMBERS, TUPLES, NAMED TUPLES, AND RANGES DON'T ALLOCATE

We start by focusing on objects that don't allocate memory. They include:

e Numbers

e Tuples

e Named Tuples
e Ranges

As these objects don't allocate, neither does creating, accessing, and operating on them. This is
demonstrated below.

function foo()
X 1, vy 2

X +y
end

julia> [@btime foo()]
0.800 ns (0 allocations: 0 bytes)



https://alfaromartino.github.io/
http://localhost:8000/PAGES/09b_onAllocations/

function foo()
tup = (1,2,3)

tup[1] + tup[2] * tup[3]
end

julia> [@btime foo()|
0.800 ns (0 allocations: 0 bytes)

function foo()
nt = (a=1, b=2, c=3)

nt.a + nt.b *x nt.c
end

julia> [@btime foo() |
0.800 ns (0 allocations: 0 bytes)

function foo()
rang = 1:3

rang[1] + rang[2] * rang[3]
end

julia> [@btime foo() |
0.800 ns (0 allocations: 0 bytes)

ARRAYS AND SLICES DO ALLOCATE MEMORY

The most common object that allocates memory is arrays. These allocations occur not only when we
create an array and assign it to a variable, but also when computations returning arrays are
performed on the fly. The following example illustrates this point.

foo() = [1,2,3]

julia> [@btime foo() |
13.714 ns (1 allocation: 80 bytes)

Slicing is another operation that creates an array, and therefore allocates. This is due to the default
behavior of slicing, which returns a new copy rather than a view of the original object. The sole
exception to this rule is when a single element is accessed, in which case no new allocation occurs.


http://localhost:8000/PAGES/05e_slices/

[1,2,3]

x
1

foo(x) = x[1:2] # ONE allocation, since ranges don't allocate (but 'x[1:2]'
itself does)

julia> [@btime foo($x) |
16.116 ns (1 allocation: 80 bytes)

X = [1,2,3]

foo(x) = x[[1,2]] # TWO allocations (one for '[1,2]' and another for
'x[[1,2]]" itself)

julia> [@btime foo($x) |
31.759 ns (2 allocations: 160 bytes)

[1,2,3]

x
1|

foo(x)

x[1] * x[2] + x[3]

julia> [@btime foo($x)]
1.400 ns (0 allocations: O bytes)

Other operations that involve array creation include array comprehensions and broadcasting.
Remarkably, broadcasting even involves memory allocation when intermediate results are computed
internally, but not explicitly returned. This specific case is demonstrated in "Broadcasting 2" below.

foo() = [a for a in 1:3]

julia> [@btime foo()]
13.514 ns (1 allocation: 80 bytes)

X [1,2,3]

foo(x) = x .* X

julia> [@btime foo($x) |
15.916 ns (1 allocation: 80 bytes)

X
foo(x)

[1,2,3]
sum(x .* x) # 1 allocation from temporary vector 'x .* x'

julia> [@btime foo($x) |
21.242 ns (1 allocation: 80 bytes)
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INTRODUCTION

In our previous discussion on Slices and Views, we defined the concept of a slice as a subvector of the

parent vector [x]. Typical examples of slices are expressions such as [x[1:2]] or [x[x .> 0]]. By

default, slices create a copy of the data and therefore incurs memory allocation, with the only
exception of slices comprising a single object.

Next, we present an approach to avoiding the overhead of memory allocation. This is based on the
concept of views, which bypass the need for a copy by directly referencing the parent object. This
method is particularly effective when slices are indexed through ranges. However, it's not suitable for
slices that employ Boolean indexing, in which case allocations will still occur.

Finally, we demonstrate that copying data could be faster than using views, despite the additional
memory allocation involved. This seeming paradox arises because creating a vector ensures that
elements are stored in a contiguous block in memory, which facilitates more efficient access to them.

VIEWS OF SLICES

We start showing that views don't allocate memory if the slice is indexed by a range. This property can
lead to performance improvements over regular slices, which create a copy by default.

SLICE AS A COPY
x = [1, 2, 3]

foo(x) = sum(x[1:2]1) # it allocates ONE vector —-> the slice 'x[1:2]'

julia> [@btime foo($x)]
15.015 ns (1 allocation: 80 bytes)

SLICE AS A VIEW
x = [1, 2, 3]

foo(x) = sum(@view(x[1:2]1)) # it doesn't allocate

julia> [@btime foo($x)]
1.200 ns (0 allocations: 0 bytes)




However, views under Boolean indexing won't reduce memory allocations or be more
performant. Therefore, don't rely on views of these objects to speed up computations. This fact is
illustrated below.

BOOLEAN INDEX (COPY)
x = rand(1_000)

foo(x) = sum(x[x .> 0.5])

julia> [@btime foo($x)|
662.500 ns (4 allocations: 8.34 KiB)

BOOLEAN INDEX (VIEW)
x = rand(1_000)

foo(x) = @views sum(x[x .> 0.5])

julia> [@btime foo($x)|
759.770 ns (4 allocations: 8.34 KiB)

COPYING DATA MAY BE FASTER

Although views can reduce memory allocations, there are scenarios where copying data can be the
faster approach. This is due to an inherent trade-off between memory allocation and data access
patterns. On the one hand, newly created vectors store data in contiguous blocks of memory, enabling
more efficient CPU access. On the other hand, while views avoid allocation, they require accessing
data scattered throughout memory.

In certain cases, the overhead of creating a copy may be outweighed by the benefits of contiguous
memory access, making copying the more efficient choice. This possibility is illustrated below.

COPY
X = rand(100_000)

foo(x) = max.(x[1:2:length(x)], 0.5)

julia> [@btime foo($x) |
30.100 ps (4 allocations: 781.34 KiB)

VIEW
x = rand(100_000)

foo(x) = max.(@view(x[1:2:1length(x)]), 0.5)

julia> [@btime foo($x)|
151.700 ps (2 allocations: 390.67 KiB)
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INTRODUCTION

This section explores scenarios where for-loops entail the creation of new vectors in each iteration,
which leads to repeated memory allocation. Specifically, we focus on situations where vectors
represent intermediate results that don't need to be stored for future use. In such cases, the issue can
be addressed by a technique known as pre-allocation.

Pre-allocation involves initializing a vector before the for-loop executes, and then reusing it to
temporarily store results during each iteration. By allocating memory upfront and modifying it in
place, the approach effectively bypasses the overhead of creating new vectors repeatedly.

The performance gains from pre-allocation can be substantial. Remarkably, the technique isn't specific
to Julia, but rather applicable across programming languages. Ultimately, its effectiveness relies on
favoring the mutation of pre-allocated memory, which minimizes the reliance on the heap.

The presentation begins by reviewing methods to initialize vectors, which constitutes a prerequisite
for pre-allocation. We then present two scenarios where pre-allocation proves advantageous. In
particular, one of them highlights the benefits of pre-allocating in the context of nested for-loops.

Remark

The review of vector initialization will be relatively brief and focused on
performance. For more details, | recommend reviewing the section
about vector creation, as well as the sections on in-place assignments)
and in-place functions).

INITIALIZING VECTORS

Vector initialization refers to the process of creating a vector to subsequently fill it with values. The
process typically involves two steps: reserving space in memory and populating the space with some
initial values. An efficient way to initialize a vector is by only performing the first step, keeping
whatever content is held in the memory address at the moment of creation. Although these values will

display a specific number, they are essentially arbitrary and meaningless, explaining why they're

referred to as [undef].

There are two methods for initializing a vector with values. The first ones requires specifying
the type and length of the array, and its syntax resembles the creation of new vectors. The second one
is based on the function |similar(y) | which creates a vector with the same type and dimension as


https://alfaromartino.github.io/
http://localhost:8000/PAGES/05d_initializeVector/
http://localhost:8000/PAGES/05d_initializeVector/
http://localhost:8000/PAGES/05g_inplace_operations/
http://localhost:8000/PAGES/05g_inplace_functions/

another existing vector .

Below, we compare the performance of approaches to initializing a vector. In particular, we show that
working with values is faster than setting specific values. To starkly show these differences, we
create a vector with 100 elements and repeat the procedure 100,000 times.

collect(1:100)
100_000 # repetitions in a for-loop

X
repetitions

function foo(x, repetitions)
for _ in l:repetitions
Vector{Int6u}(undef, length(x))
end
end

julia> [@btime foo($x, $repetitions) |
1.581 ms (100000 allocations: 85.45 MiB)

collect(1:100)
100_000 # repetitions in a for-loop

X
repetitions

function foo(x, repetitions)
for _ in l:repetitions
similar(x)
end
end

julia> [@btime foo($x, $repetitions) |
1.623 ms (100000 allocations: 85.45 MiB)

collect(1:100)
100_000 # repetitions in a for-loop

X
repetitions

function foo(x, repetitions)
for _ in l:repetitions
zeros(Inté6d, length(x))
end
end

julia> [@btime foo($x, $repetitions) |
7.530 ms (100000 allocations: 85.45 MiB)

X
repetitions

collect(1:100)
100_000 # repetitions in a for-loop

function foo(x, repetitions)
for _ in l:repetitions
ones(Inté6d, length(x))
end
end

julia> [@btime foo($x, $repetitions) |
4.674 ms (100000 allocations: 85.45 MiB)




X collect(1:100)

100_000 # repetitions in a for-loop

repetitions

function foo(x, repetitions)
for _ in 1l:repetitions
fill(2, length(x)) # vector filled with integer 2
end
end

julia> [@btime foo($x, $repetitions)|
4.877 ms (100000 allocations: 85.45 MiB)

Remark

Recall that [_]is a convention adopted for denoting dummy variables.
They're variables that have a value, but aren't used or referenced
anywhere in the code. In the context of a for-loop, the sole purpose of
[_] is to satisfy the syntax requirements, which expects a variable to
iterate over.

The symbol |:| is arbitrary and any other could be used in its place.
Throughout the website, we've consistently used [_] when our intention
is to repeatedly compute the same operation.

APPROACHES TO INITIALIZING VECTORS

We can initialize by passing it to the function as a keyword argument. This enables using
'similar(x)| where is a previous function's argument. Considering this, the following two

implementations turn out to be equivalent.

function foo(x)

output = similar(x)

# <some calculations using 'output'>
end

function foo(x; output = similar(x))

# <some calculations using 'output'>
end

When it comes to initializing multiple variables, we can leverage array comprehension to obtain a
concise syntax. The only requisite for this approach is that all variables to be initialized share the same
type. Below, we additionally present a more efficient approach based on what's known as generators.



This subject is covered in a subsequent section. At this point, you should only know that the method
based on generators doesn't allocate. Furthermore, its syntax is similar to array comprehension, with
the only difference that brackets [[]]are replaced with parentheses [ () ]

x = [1,2,3]

function foo(x)
a,b,c = [similar(x) for _ in 1:3]
# <some calculations using a,b,c>
end

julia> [@btime foo($x)|
49.848 ns (4 allocations: 320 bytes)

x = [1,2,3]

function foo(x)
a,b,c = (similar(x) for _ in 1:3)
# <some calculations using a,b,c>
end

julia> [@btime foo($x) |
35.348 ns (3 allocations: 240 bytes)

The demonstration uses as an example, but the same principle applies to other
initialization methods such as|Vector{Float64}(undef, length(x))|.

PRE-ALLOCATING VECTORS IN NESTED FOR-LOOPS

When working with vectors, certain operations inherently require the creation of new vectors, whether
as intermediate steps or final results. These operations commonly arise with for-loops and
broadcasting. The following examples demonstrate this. Note that both approaches in the example
create a new vector, even when the operation ultimately yields a scalar value.

x = rand(100)

function foo(x)
output = similar(x) # you need to create this vector to store the results

for i in eachindex(x)
output[i] = 2 » x[i]
end

return output
end

julia> [@btime foo($x)|
45.416 ns (1 allocation: 896 bytes)




x = rand(100)

foo(x) = sum(2 .* x) # 2 .* x implicitly creates a temporary vector

julia> [@btime foo($x)|
36.779 ns (1 allocation: 896 bytes)

When the result needs to be stored, allocating a new vector is unavoidable. This is particularly true
when the computed result is the final output. However, the operation could serve as an intermediate
step in a larger computation, which may involve another for-loop. We refer to these scenarios as
nested for-loops.

The following example illustrates how each iteration in the second for-loop generates a new vector for
the intermediate result.

x = rand(160)

function foo(x; output = similar(x))
for i in eachindex(x)
output[i] = 2 » x[i]
end

return output
end
calling_foo_in_a_loop(Coutput,x) = [sum(foo(x)) for _ in 1:100]

julia> [@btime calling_foo_in_a_loop($x)|
6.160 pus (101 allocations: 88.38 KiB)

x = rand(100)
foo(x) = 2 .*% X

calling_foo_in_a_loop(x) = [sum(foo(x)) for _ in 1:100]

julia> [@btime calling_foo_in_a_loop($x) |
6.433 ps (101 allocations: 88.38 KiB)

Scenarios like this lead to unnecessary memory allocations, making them well-suited for pre-allocation
of the intermediate result. By adopting this strategy, we can reuse the same vector across iterations,
effectively bypassing the memory allocations stemming from creating a new vector multiple times.

To implement it, we need an in-place function that takes the output of the for-loop as one of the
arguments. This function will eventually be called iteratively, updating its output in each iteration.
There are two ways to implement this strategy, and we analyze each separately in the following.

VIA A FOR-LOOP
The first approach defines an in-place function that updates the values of [output | through a for-loop.




X rand(100)
output = similar(x)

function foo! (output,x)
for i in eachindex(x)
output[i] = 2 * x[i]
end

return output
end

julia> [@btime foo!($output, $x) |
5.100 ns (0@ allocations: 0 bytes)

X rand(100)
output = similar(x)

function foo! (output,x)
for i in eachindex(x)
output[i] = 2 * x[i]
end

return output
end
calling_foo_in_a_loop(output,x) = [sum(foo!(output,x)) for _ in 1:100]

julia> [@btime calling_foo_in_a_loop($output, $x) |
1.340 ps (1 allocation: 896 bytes)

VIA BROADCASTING

The second option relies on the operator E| to update a vector's values. Relative to the example
above, this allows for an update through a simpler syntax, where is defined in one line.

rand(100)
similar(x)

X
output

foo!(output,x) = (output .= 2 .* x)

julia> [@btime foo!($output, $x) |
5.800 ns (0 allocations: 0 bytes)

X rand(100)

output = similar(x)

foo! (output,x) = (@. output = 2 * x)

julia> [@btime foo!($output, $x) |
5.400 ns (0 allocations: 0 bytes)




X = rand(100)
output = similar(x)

foo! (output,x) = (@. output = 2 * x)

calling_foo_in_a_loop(output,x) = [sum(foo! Coutput,x)) for _ in 1:100]

julia> ’@btime calling_foo_in_a_loop($0utput,$x)‘
1.320 ps (1 allocation: 896 bytes)

)
Warning! - Use of @. to update values

When your goal is to update values of a vector, recall that has to be
placed at the beginning of the statement.

# the following are equivalent and define a new variable
output = @. 2 * x
output = 2 % X

# the following are equivalent and update 'output'’
@. output =2 =* x

output .= 2 .* x

PRE-ALLOCATIONS FOR INTERMEDIATE STEPS

So far, our discussion has centered around the benefits of pre-allocating vectors in nested for-loops.
However, its applicability extends beyond this specific scenario.

Broadly speaking, pre-allocating proves useful when: i) the vector serves an intermediate result that
feeds into another operation, and ii) the intermediate result is computed inside a for-loop. If these two
conditions are met, reusing the same pre-allocated vector outperforms a strategy based on a new
vector for each iteration.

Next, we analyze a case where these conditions hold, even though isn't called in a for-loop as it'd
be the case in a nested for-loop. The usefulness of a pre-allocation emerges because |output
demands a complex computation, making it convenient to split the calculation in several steps.

To illustrate the procedure, consider an operation where represents an intermediate variable to

compute [output]. All the implementations below don't pre-allocate [temp], and hence create a new
vector in each iteration.



x = rand(100)

function foo(x; output = similar(x))
for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo($x) |
14.700 ps (201 allocations: 11.81 KiB)

X = rand(100)

foo(x) = [sum(x .> x[i]) for i in eachindex(x)]

julia> [@btime foo($x)|
14.600 ps (201 allocations: 11.81 KiB)

x = rand(100)

function foo(x)
temp = [x .> x[i] for i in eachindex(x)]
output = sum. (temp)

end

julia> [@btime foo($x)|
15.100 ps (202 allocations: 12.69 KiB)

In the following, we pre-allocate [temp], although the scenario considered exhibits some differences
relative to a nested for-loop. These differences result in some subtle aspects regarding their
implementation.

First, as we're assuming that this function won't be called in a for-loop, the pre-allocation can be
performed within the function, rather than defining as an argument of [foo]. Second, all the
iterations occur within the same for-loop, making the broadcasting option more convenient. The
consequences of these differences for the implementation are discussed below.

VIA A FOR-LOOP OR BROADCASTING
Pre-allocating and update its values via broadcasting is the simplest way for the scenario

considered. In fact, this method doesn't require departing from the original syntax. On the contrary,
the use a for-loop is more involved.



x = rand(100)

function foo!(x; output = similar(x), temp = similar(x))
for i in eachindex(x)
for j in eachindex(x)
temp[j] = x[j]1 > x[i]
end
output[i] = sum(temp)
end

return output
end

julia> [@btime foo!($x)]
1.850 pus (2 allocations: 1.75 KiB)

X = rand(100)

function foo!(x; output = similar(x), temp = similar(x))
for i in eachindex(x)
temp .= x .> x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo!($x)]
1.660 pus (2 allocations: 1.75 KiB)

x = rand(100)

function foo!(x; output = similar(x), temp = similar(x))
for i in eachindex(x)
@. temp = x > x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo!($x)]
1.660 ps (2 allocations: 1.75 KiB)

Note that the two allocations observed are due to the creation of and [output] which are
incurred only once rather than in each iteration.

VIA IN-PLACE FUNCTION

Given the features of the scenario considered, we can also implement the pre-allocation via an in-

place function. We refer to it as update_temp!

, which is defined outside the for-loop and updated in

each iteration. An advantage of this approach is that we separate |update_temp! | from the for-loop,




and hence we can focus on |update_temp! |if the operation is performance critical.

X = rand(100)

function update_temp!(x, temp, i)
for j in eachindex(x)
temp[j]l = x[j] > x[il]
end
end

function foo!(x; output = similar(x), temp = similar(x))
for i in eachindex(x)
update_temp!(x, temp, i)
output[i] = sum(temp)
end

return output
end

julia> [@btime foo!($x)]
1.790 ps (2 allocations: 1.75 KiB)

x = rand(100)
update_temp!(x, temp, i) = (@. temp = x > x[i])

function foo!(x; output = similar(x), temp = similar(x))
for i in eachindex(x)
update_temp!(x, temp, i)
output[i] = sum(temp)
end

return output
end

julia> [@btime foo!($x)]
1.680 ps (2 allocations: 1.75 KiB)

ADDING A NESTED FOR-LOOP

We know combine both cases, where requires an intermediate variable and then is called
in another for-loop. In such a scenario, both |output | and |temp| needs to be initialized outside the

functions and used as function arguments. The following example illustrates this by considering only

lupdate_temp! | using broadcasting.




X = rand(100)

update_temp!(x, temp, i) = (@. temp = x > x[il)

function foo!(x; output = similar(x), temp = similar(x))
for i in eachindex(x)
update_temp!(x, temp, i)
output[i] = sum(temp)
end
return output
end

_ in 1:1_000]

calling_foo_in_a_loop(x) = [foo!(x) for

julia> |@btime calling_foo_in_a_loop($x)|
1.734 ms (2001 allocations: 1.72 MiB)

X = rand(100)
output = similar(x)
temp = similar(x)

update_temp!(x, temp, i) = (@. temp = x > x[i])

function foo!(x, output, temp)
for i in eachindex(x)
update_temp!(x, temp, i)
output[i] = sum(temp)
end
return output
end

calling_foo_in_a_loop(x, output, temp) = [foo!(x, output, temp) for _ in 1:1_000]

julia> |@btime calling_foo_in_a_loop($x, $output, $temp)|
1.666 ms (1 allocation: 7.94 KiB)
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INTRODUCTION

Reductions are a powerful technique for operations that take collections as inputs and return a
single element. They arise naturally when we need to compute summary statistics such as an
average, variance, or maximum of a collection.

The reduction process works by iteratively applying an operation to pairs of elements, accumulating
the results at each step until the final output is obtained. For example, to compute for a
vector [x], a reduction would start by adding the first two elements, then add the third element to the
total, and continue this cumulative process until all elements have been summed.

The method is particularly convenient when we need to transform a vector's elements prior to
computing a summary statistic. By operating on scalars, reductions sidestep the need to
materialize intermediate outputs, thereby reducing memory allocations. This means that, if for

example you have to compute [sum(log.(x))| a reduction would avoid the creation of the

intermediate vector | log. (x) |.

INTUITION

Reductions are typically implemented using a for-loop, with an operator applied to pairs of elements
and the resulting output updated in each iteration. A classic example is the summation of all numeric
elements in a vector. This involves applying the addition operator |+ | to pairs of elements, iteratively
updating the accumulated sum. This is demonstrated below.

X rand(100)

foo(x) = sum(x)

julia> [foo(0)]

48.447



https://alfaromartino.github.io/

X = rand(100)

function foo(x)
output = 0.

for i in eachindex(x)
output = output + x[i]

end

return output

end
julia>
48,447

X = rand(100)

function foo(x)
output = 0.

for i in eachindex(x)
output += x[i]

end

return output

end
julia>
48,447

In reductions, it's common to see implementations like the last tab, which are based on update

operators. This entails that an expression like is equivalentto[x = x + a|

IMPLEMENTING REDUCTIONS

Reductions are implemented by applying either a binary operator or a two-argument function during
each iteration. An example of a binary operator is , as we used above. However, we could have also

used [ +]| as a two-argument function, replacing [output = output + x[i]|with [output = +(output,

x[1]) | The possibility of using functions broadens the scope of reductions. For instance, it allows us to
compute the maximum value of a vector [x] by the function [max] where returns the
maximum of the scalars[a]and [b].

Formally, a reduction requires the binary operation to satisfy two mathematical requirements:

e Associativity: the way in which operations are grouped does not change the result. For example,
addition is associative because|(a + b) + c =a + (b + c)|.

» Existence of an identity element: there exists an element that leaves any other element
unchanged when the binary operation is applied. For example, the identity element of addition is

0 because[a + 0 = ]


http://localhost:8000/PAGES/02b_variables/#sub_updating_variables
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The following list indicates the identity elements of each operation.

Operation Identity Element

Sum 0
Product 1
Maximum -Inf
Minimum Inf

The relevance of identity elements lies in that they constitute the initial values of the iterative process.

Based on these identity elements, we next implement reductions for several operations. The examples
make use of the function to show the desired outcome, while provides the same output

via a reduction.

x = rand(160)
fo0l(x) = sum(x)

function foo02(x)
output = 0.

for i in eachindex(x)
output += x[i]

end

return output

end

x = rand(100)
f00l(x) = prod(x)

function foo02(x)
output = 1.

for i in eachindex(x)
output *= x[i]
end

return output
end




X = rand(100)
fool(x) = maximum(x)

function foo2(x)
output = -Inf

for i in eachindex(x)
output = max(output, x[il)
end

return output
end

X = rand(100)
fool(x) = minimum(x)

function foo02(x)
output = Inf

for i in eachindex(x)
output = minCoutput, x[il)

end

return output

end

We can also visually illustrate how reductions operate in these examples, as we do below.

REDUCTION 1: sum of [1,2,3,4]

Initial Value: 0

Iteration 1: [0+ 1], 2, 3, 4]

H/_/
Iteration 2: |—> L+2], 3, 4]
~—
Iteration 3: |—> I3+ 3, 4]
~—

Iteration 4: |—> 6 + 4]

P p—
Final Output: |—>



REDUCTION 2: maximum of [1,4,2,8]

Initial Value: —Inf

Iteration 1: [maxz{—Inf,1}|, 4, 2, 8]

[ ——]

Iteration 2: L_>»[Tnax{1,4}, 2, §]
| —
Iteration 3: L——>[max{4,2}, 8]
| ——
Iteration 4: max{4,8}
Final Output: L»

AVOIDING MEMORY ALLOCATIONS VIA REDUCTIONS

One of the primary advantages of reductions is that they avoid the memory allocation of intermediate

results. To illustrate this, consider the operation [sum(log. (x))]for a vector [x]. This operation involves
transforming [x|into and then summing the transformed elements. By default, broadcasting
creates a new vector to store the result of [ Log. (x) ], thereby allocating memory for it. However, we're
only interested in the final sum and not the intermediate result itself. Therefore, an approach that
bypasses the allocation of is beneficial. Reductions accomplish this by defining a scalar
[output], which is iteratively updated by summing the transformed values of [x]. '

x = rand(100)
f001(x) = sum(log.(x))

function foo02(x)
output = 0.

for i in eachindex(x)
output += log(x[i])
end

return output
end

julia> [@btime fool($x) ]|

315.584 ns (1 allocation: 896 bytes)
julia> [@btime foo2($x) ]

296.119 ns (0 allocations: 0 bytes)




x = rand(100)
f001(x) = prod(log.(x))

function foo02(x)
output = 1.

for i in eachindex(x)
output *= log(x[il)
end

return output
end

julia> [@btime fool($x)]
311.840 ns (1 allocation: 896 bytes)

julia> [@btime foo2($x) ]
296.061 ns (0 allocations: 0 bytes)

x = rand(100)
f00l1(x) = maximum(log.(x))

function foo02(x)
output = -Inf

for i in eachindex(x)
output = max(Coutput, log(x[il))
end

return output
end

julia> [@btime fool($x) ]

482.602 ns (1 allocation: 896 bytes)
julia> [@btime foo2($x) |

374.961 ns (0 allocations: O bytes)




x = rand(100)
fo0l(x) = minimum(log. (x))

function foo2(x)
output = Inf

for i in eachindex(x)
output = min(Coutput, log(x[il))
end

return output
end

julia> [@btime fool($x) |
487.156 ns (1 allocation: 896 bytes)

julia> [@btime fo02($x) |
368.502 ns (0 allocations: 0 bytes)

REDUCTIONS VIA BUILT-IN FUNCTIONS

The previous examples implemented reductions through explicit for-loops. Unfortunately, this
approach can compromise readability due to the verbosity of for-loops. To address the issue, Julia

offers several streamline alternatives to implement reductions.

For common operations, Julia also implements as additional methods of the functions
[sum] [prod] [maximum] and [minimum] These built-in implementations are more efficient than
[mapreduce], as they've been optimized for each respective case. Their syntax is given by
| foo(<transforming function>, x)|, where is one of the functions mentioned and is the
vector to be transformed. For instance, the following examples consider reductions for the

transformed vector[2 .* x].

rand(100)

X
]

foo(x)

sum(log, x) #same output as sum(log.(x))

julia> [@btime foo($x) |
294.889 ns (0 allocations: 0 bytes)

rand(100)

X
]

foo(x)

prod(log, x) #same output as prod(log.(x))

julia> [@btime foo($x)|
294.763 ns (0 allocations: 0 bytes)




rand(100)

X
1

foo(x) = maximum(log, x) #same output as maximum(log.(x))

julia> [@btime foo($x)]
579.940 ns (0 allocations: 0 bytes)

rand(100)

X
1

foo(x) = minimum(log, x) #same output as minimum(log.(x))

julia> [@btime foo($x) |
577.516 ns (0 allocations: 0 bytes)

While we've used the built-in function for transforming [x], the approach can be employed
through anonymous functions.

rand(100)

x
1

foo(x) = sum(a —> 2 * a, x) #same output as sum(2 .* x)

julia> [@btime foo($x)]
6.493 ns (0 allocations: 0 bytes)

rand(100)

x
1

foo(x) = prod(a -> 2 * a, x) #same output as prod(2 .* x)

julia> [@btime foo($x) |
6.741 ns (0 allocations: 0 bytes)

rand(100)

X
1

foo(x)

maximum(a —-> 2 * a, x)  #same output as maximum(2 .* x)

julia> [@btime foo($x) |
172.547 ns (0 allocations: 0 bytes)

rand(100)

X
1l

foo(x)

minimum(a -> 2 * a, x)  #same output as minimum(2 .* x)

julia> [@btime foo($x)]
171.490 ns (0 allocations: 0 bytes)

Finally, all these functions accept transforming functions that require multiple arguments. To
incorporate this possibility, it's necessary to enclose the multiple variables using , and referring to
each variable through indexes. We illustrate this below, where the transforming function is[x .* y]



x = rand(100); y = rand(100)

foo(x,y) = sum(a —> a[l] * a[2], zip(x,y)) #same output as sum(x .* y)

julia> [@btime foo($x) |
29.127 ns (0 allocations: 0 bytes)

x = rand(100); y = rand(100)

foo(x,y) = prod(a —> a[l1] * a[2], zip(x,y)) #same output as prod(x .* y)

julia> [@btime foo($x)|
48.031 ns (0 allocations: 0 bytes)

x = rand(100); y = rand(100)

foo(x,y) = maximum(a —-> al[l] * a[2], zip(x,y)) #same output as maximum(x .* y)

julia> [@btime foo($x)|
172.580 ns (0 allocations: 0 bytes)

x = rand(100); y = rand(100)

foo(x,y) = minimum(a -> al[l] * a[2], zip(x,y)) #same output as minimum(x .* y)

julia> [@btime foo($x) |
166.969 ns (0 allocations: 0 bytes)

THE "REDUCE" AND "MAPREDUCE" FUNCTIONS

Beyond the specific functions we've considered, we can also implement reductions as long as the
operation satisfies the requirements for their application. This is implemented through the functions
[reduce] and [mapreduce]. Their difference lies in that applies the reduction directly, while

transforms the collection's elements prior to doing it.

It's worth remarking that reductions with [sum] [prod] [max], and should still be done via the
dedicated functions. The reason is that they've been optimized for their respective tasks. In this

context, our primary use case of [ reduce | and |mapreduce | is for other types of reductions not covered

or when packages provide their own implementations of these functions. 2

FUNCTION "REDUCE"

The function uses the syntax [reduce(<function>, x)
function. The following example demonstrates its use.

, where is a two-argument




rand(100)

x
1

foo(x) = reduce(+, x) #same output as sum(x)

julia> [@btime foo($x)]
6.168 ns (0 allocations: 0 bytes)

rand(100)

x
1

foo(x) = reduce(*, x) #same output as prod(x)

julia> [@btime foo($x) |
6.176 ns (0 allocations: 0 bytes)

rand(100)

x
1

foo(x) = reduce(max, x) #same output as maximum(x)

julia> [@btime foo($x) |
167.905 ns (0 allocations: 0 bytes)

rand(100)

x
1

foo(x) = reduce(min, x) #same output as minimum(x)

julia> [@btime foo($x)]
167.440 ns (0 allocations: 0 bytes)

Note that all the examples provided could've been implemented as we did previously, where we

directly applied [ sum| [prod|, [maximum|and [minimum|.

FUNCTION "MAPREDUCE"

The function combines the functions [map| and [reduce before applying the reduction,
transforms vectors via the function [map] Recall that [map(foo,x)]| transforms each

element of the collection by applying element-wise. Thus, [mapreduce(<transformation>,
<reduction>, x) ]| first transforms [x|'s elements through [map], and then applies a reduction to the
resulting output.

To illustrate its use, we make use of a transformation.

rand(100)

X
1

foo(x)

mapreduce(log, +, x) #same output as sum(log.(x))

julia> [@btime foo($x) |
294.805 ns (0 allocations: 0 bytes)



http://localhost:8000/PAGES/03e_vectorizing/#the_map_function

rand(100)

X
1

foo(x)

mapreduce(log, *, x) #same output as prod(log.(x))

julia> [@btime foo($x)]
294.618 ns (0 allocations: 0 bytes)

rand(100)

X
1

foo(x)

mapreduce(log, max, x) #same output as maximum(log.(x))

julia> [@btime foo($x) |
579.808 ns (0 allocations: O bytes)

rand(100)

X
1

foo(x) = mapreduce(log, min, x) #same output as minimum(log. (x))

julia> [@btime foo($x) |
577.505 ns (0 allocations: 0 bytes)

Just like with [reduce], note that the examples could've been implemented directly as we did
previously, through the functions [sum|,{ prod | [maximum|, and [ minimum|.

can also be used with anonymous functions and transformations requiring multiple
arguments. Below, we illustrate both, whose implementation is the same as with [sum],

maximum|, and [minimum |

x = rand(100); y = rand(100)

foo(x,y) = mapreduce(a —> a[l1l] * a[2], +, zip(x,y)) #same output as sum(x .* y)

julia> [@btime foo($x) |
29.165 ns (0 allocations: 0 bytes)

x = rand(100); y = rand(100)

foo(x,y) = mapreduce(a -> a[l] * a[2], *, zip(x,y)) #same output as prod(x .* y)

julia> [@btime foo($x) |
48.221 ns (0 allocations: 0 bytes)

x = rand(100); y = rand(100)

foo(x,y) = mapreduce(a -> a[l1l] * a[2], max, zip(x,y)) #same output as maximum(x .* y)

julia> [@btime foo($x)]
175.634 ns (0 allocations: 0 bytes)




x = rand(100); y = rand(100)

foo(x,y) = mapreduce(a -> a[l] * a[2], min, zip(x,y)) #same output as minimum(x .* y)

julia> [@btime foo($x) |
166.995 ns (0 allocations: 0 bytes)

REDUCE OR MAPREDUCE?
can be considered as a special case of [mapreduce], where the latter transforms [x] through
the identity function, | identity(x) | Likewise, |mapreduce(<transformation>, <operator>,x) | produces

the same result as |[reduce(<operator>, map(<transformation>,x)) | However, is more
efficient, since it avoids the allocation of the transformed vector. This is demonstrated below, where

we compute [sum(2 .* x) |through a reduction.

X = rand(100)

foo(x) = mapreduce(a —> 2 * a, +, x)

julia> [@btime foo($x)|
6.372 ns (0 allocations: 0 bytes)

X = rand(100)

foo(x) = reduce(+, map(a -> 2 * a, x))

julia> [@btime foo($x)|
43.476 ns (1 allocation: 896 bytes)

FOOTNOTES

T-In the section Lazy Operations, we'll explore an alternative with broadcasting that doesn't materialize
intermediate results either.

2 For instance, the package provides a parallelized version of both [map|and [mapreduce], enabling the
utilization of all available CPU cores. Its syntax is identical to Julia's built-in functions.
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INTRODUCTION

Due to the memory-allocation overhead involved, the creation of vectors can rapidly become a
performance bottleneck. The issue has far-reaching implications, as vector creation not only occurs
when we explicitly define a variable holding a new vector. It also happens internally in various
scenarios, such as when referencing a slice like or computing intermediate results on the fly

like in the operation [sum(x .* y)]|

This section introduces a way to address this limitation, while still preserving the use of vectors for

collections. The solution leverages the so-called static vectors, provided by the [StaticArrays

package. Unlike built-in vectors, which are allocated on the heap, static vectors are stack-allocated.

Internally, static vectors are build on top of tuples. This feature determines that static vectors are
only suitable for collections comprising a few elements. As a rule of thumb, consider using static
vectors for collections with up to 75 elements. Exceeding this threshold can lead to increased
overhead during creation and access, potentially offsetting any performance benefits or even resulting
in a fatal error. '

Static vectors offer additional benefits relative to tuples. Firstly, they maintain their performance
benefits even at sizes where tuples would typically lose their advantages. Secondly, they're more
convenient to work with, as they are manipulated similarly to regular vectors. In fact, they support any

array type, including matrices. Finally, the [StaticArrays| package provides mutable variants. This

makes static vectors more flexible than tuples, which are only available in an immutable form. It's
worth indicating tough that, while the mutable version provides performance benefits relative to
regular vectors, the immutable option still offers the best performance.

Warning!

To avoid repetition, the entire section assumes all collections are
small. Taking this into account, all the benefits highlighted are
contingent upon this assumption. We also suppose that the

|StaticArrays| package is already available in the workspace, so the

command |using StaticArrays|is omitted from each code snippet.

CREATING STATIC VECTORS



https://alfaromartino.github.io/

The package |StaticArrays |include several variants of static vectors. Our focus in particular we'll be
on the type [Svector | whose objects will be simply referred to as SVectors.

There are two approaches to creating an SVector, each serving a distinct purpose. The first one creates
an SVector through literal values, while the other option included converts a standard vector into an
SVector. The several implementations of each approach are illustrated below.

# all 'sx' define the same static vector '[3,4,5]'

sx = SVector(3,4,5)

sx = SVector{3, Inte6u}(3,4,5)
SA[3,4,5]

@SVector [i for i in 3:5]

SX

SX

julia>

3-element SVector{3, Int64} with indices SOneTo(3):
3

4

5

# all 'sx' define a static vector with same elements as 'x'
x = collect(1:10)

sx = SVector(x...)

sx = SVector{length(x), eltype(x)}(x)
sx = SA[x...]

sx = @SVector [a for a in x]

julia>

10-element SVector{10, Int64} with indices SOneTo(10):
1
2
3

10

Of these approaches, we'll primarily rely on the function [Svector| occasionally employing for
indexing purposes. 2 Note the use of the splatting_operator |1| to turn a regular vector into an

SVector. This operator is necessary for the function to transform a collection into a sequence

of arguments. >

Regarding slices of SVectors, the approach used for their creation could result in either a regular
vector or an SVector. This depends on the indexing employed: a slice remains an SVector when indices
are given as SVectors, whereas the slice becomes a regular vector for indices provided by ranges or
regular vectors. The sole exception to this rule is when the slice references the whole object (i.e.,
'sx[:]1), in which case an SVector is returned.
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x = collect(3:10) ; sx = SVector(x...)

# both define static vectors
slicel = sx[:]

slice2 = sx[SA[1,2]] # or slice2 = sx[SVector(1,2)]
julia>
8-element SVector{8, Int64} with indices SOneTo(8):
3
4
9
10
julia>
2-element SVector{2, Int64} with indices SOneTo(2):
3
4

x = collect(3:10) ; sx = SVector(x...)

# both define and ordinary vector
slice2 = sx[1:2]
slice2 = sx[[1,2]]

julia>

2-element Vector{Int64}:
3

4

SVECTORS DON'T ALLOCATE MEMORY AND ARE FASTER

One of the key advantages of SVectors is that they're internally built on top of tuples. Consequently,
SVectors don't allocate memory.

X = rand(10)

function foo(x)

a = x[1:2] # 1 allocation (copy of slice)
b = [3,4] # 1 allocation (vector creation)
sum(a) * sum(b) # 0 allocation (scalars don't allocate)

end

julia> [@btime foo($x) |
29.819 ns (2 allocations: 160 bytes)




X = rand(10)

@views function foo(x)

a = x[1:2] # 0 allocation (view of slice)
b = [3,4] # 1 allocation (vector creation)
sum(a) * sum(b) # 0 allocation (scalars don't allocate)

end

julia> [@btime foo($x)]
15.015 ns (1 allocation: 80 bytes)

x = rand(10); tup = Tuple(x)

function foo(x)

a = x[1:2] # 0 allocation (slice of tuple)
b=(3,4) # 0 allocation (tuple creation)
sum(a) * sum(b) # 0 allocation (scalars don't allocate)

end

julia> [@btime foo($tup)]
1.400 ns (0 allocations: 0 bytes)

X = rand(10); sx = SA[x...]

function foo(x)

a = x[SA[1,2]] # 0 allocation (slice of static array)
b = SA[3,u4] # 0 allocation (static array creation)
sum(a) * sum(b) # 0 allocation (scalars don't allocate)

end

julia> [@btime foo($sx) ]
1.600 ns (0 allocations: 0 bytes)

The decrease in memory allocations from SVectors is especially relevant for operations that result in
temporary vectors, such as broadcasting.

x = rand(10)

foo(x) = sum(2 .* x)

julia> [@btime foo($x) |
17.936 ns (1 allocation: 144 bytes)




x = rand(10); sx = SVector(x...)

foo(x) = sum(2 .* x)

julia> [@btime foo($sx) |
1.800 ns (0 allocations: 0 bytes)

Interestingly, the performance benefits of SVectors extend beyond memory allocation. This entails
that, even when operations on regular vectors don't allocate memory, SVectors can still provide a

speed boost. Below, we demonstrate this through the function [sum(f, <vector>)] which sums the

elements of [<vector>] after they're transformed via[f]. The example shows that the implementation
with SVectorsyields faster execution times, even though regular vectors already don't incur memory

allocations.

X = rand(10)

foo(x) = sum(a -> 10 + 2a + 3a"2, x)

julia> [@btime foo($x)|
4.400 ns (0 allocations: 0 bytes)

x = rand(10); sx = SVector(x...);

foo(x) = sum(a -> 10 + 2a + 3a"2, x)

julia> [@btime foo($sx) |
2.900 ns (0 allocations: 0 bytes)

SVECTOR TYPE AND ITS MUTABLE VARIANT

Similar to tuples, SVectors are immutable, meaning that its elements can't be added, removed, or

modified. Nevertheless, when mutable collections are needed, the package |StaticArrays | provides a
variant given by the type [Mvector|. The creation of MVector instances and their slices follow the same
syntax as SVectors, with the only difference being the substitution of the function with

[Mvector |. This is illustrated below.

x = [1,2,3]
sx = SVector(x...)
sx[1] = 0

ERROR: setindex!(::SVector{3, Int64}, value, ::Int) is not defined




[1,2,3]
MVector(x...)

x
1

mx
mx[1] = ©

julia>

3-element MVector{3, Int64} with indices SOneTo(3):
0

2

3

The mutability of MVectors makes them ideal for initializing a vector that will eventually be filled via a

for-loop. In fact, executing[similar (sx) |when|sx]is an SVector automatically returns an MVector.

sx = SVector(1,2,3)

mx = similar(sx) # it defines an MVector with undef elements

3-element MVector{3, Int64} with indices SOneTo(3):
2073873450800
-1152921504606846976
0

TYPE STABILITY: SIZE IS PART OF THE STATIC VECTORS' TYPE

SVectors are formally defined as objects with type [Svector{N, T}], where [N] specifies the number of
elements and denotes the element's type. For instance, |Svector(4,5,6)| has type
[svector{3, Int64} ] indicating that it comprises 3 elements with type [Int64]. Importantly, this implies
that the number of elements is part of the type. This feature, which is shared with
MVectors and inherited from tuples, can readily introduce type instabilities if not handled carefully.

The approaches to ensuring type stability are similar to those employed for tuples. This means that

we should either pass SVectors and MVectors as function arguments, or dispatch by the number of
elements through the [Valjtechnique.
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x = rand(50)

function foo(x)
output = SVector{length(x), eltype(x)}(Cundef)
output = MVector{length(x), eltype(x)}(undef)

for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)
end

return output
end

@code_warntype foo(x) # type unstable

x = rand(50); sx = SVector(x...)
function foo(x)
output = MVector{length(x), eltype(x)}(undef)
for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)

end

return output
end

@code_warntype foo(sx) # type stable

x = rand(50)

function foo(x, ::Val{N}) where N
sX = SVector{N, eltype(x)}(x)
output = MVector{N, eltype(x)}(undef)

for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)
end

return output
end

@code_warntype foo(x, Val(length(x))) # type stable

PERFORMANCE COMPARISON




MVectors offer performance benefits over regular vectors. However, you should bear in mind that
they're never more performant than SVectors and may additionally result in memory allocations.
Considering this, it's recommended to use SVectors if you're certain that the collection won't be
mutated.

Below, we illustrate the performance of SVectors and MVectors. The examples demonstrate that they
may exhibit similar performance, with the possibility of SVectors being more performant.
Furthermore, SVectors and MVectors consistently outperform regular vectors for small collections,
regardless of their relative performance. To emphasize this point, we include the benchmark time for
the same operation using a regular vector.

= rand(10)
SVector(x...); mx = MVector(x...)

X
|

SX

foo(x) = sum(a -> 10 + 2a + 3a"2, x)

julia> [@btime foo($x)]
4.400 ns (0 allocations: 0 bytes)

julia> [@btime foo($sx) ]|
2.800 ns (0 allocations: 0 bytes)

julia> [@btime foo($mx) ]
2.900 ns (0 allocations: 0 bytes)

rand(10)
sx = SVector(x...); mx = MVector(x...)

x
1]

foo(x) = 10 + 2x + 3x"2

julia> [@btime foo.($x)]
19.739 ns (1 allocation: 144 bytes)

julia> [@btime foo.($sx)]
1.600 ns (0 allocations: 0 bytes)

julia> [@btime foo.($mx)]
6.600 ns (1 allocation: 96 bytes)

STATIC VECTORS VS PRE-ALLOCATIONS

Considering the advantages of static vectors over regular vectors, we can now compare their
performance to other strategies that reduce memory allocations. In particular, we'll examine how they
stack up against pre-allocating memory for intermediate outputs. Our examples demonstrate that
static vectors can efficiently store intermediate results, making pre-allocation techniques unnecessary.
Moreover, they reveal that storing the final output in an MVector can lead to performance gains over
using a regular vector.



For the illustration, we consider a for-loop that requires an intermediate result during each iteration
[i] This involves counting the number of elements in [x] that are greater than [x[i]], which can be
formally implemented as [sum(x .> x[i])] To make the comparison starker, we isolate the
computation of the intermediate step [x .> x[i]]. Note that every implementation below requires
pre-allocating the vector [output], leaving us with only one decision to make: whether to pre-allocate
the temporary vector [temp]. This also explains why all implementations involve at least one memory

allocation.

x = rand(50)

function foo(x; output = similar(x))
for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo($x)]
3.188 us (101 allocations: 5.17 KiB)

x = rand(50)

function foo(x; output = similar(x), temp = similar(x))
for i in eachindex(x)
@. temp = x > x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo($x) |
695.745 ns (2 allocations: 992 bytes)

x = rand(50); sx = SVector(x...)

function foo(x; output = Vector{Floatéu}(undef, length(x)))
for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo($sx) ]
183.661 ns (1 allocation: 496 bytes)




x = rand(50); sx = SVector(x...)

function foo(x; output = similar(x))
for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo($sx) |
148.817 ns (1 allocation: 448 bytes)

x = rand(50); sx = SVector(x...)

function foo(x; output = MVector{length(x),eltype(x)}(undef))
for i in eachindex(x)
temp = x .> x[i]
output[i] = sum(temp)
end

return output
end

julia> [@btime foo($sx)|
148.975 ns (1 allocation: 448 bytes)

The "No-Preallocation" tab serves as our baseline, providing a reference point for the other methods.
As for the "Pre-allocating" tab, it reuses a regular vector to compute [temp]. In contrast, the "SVector"
tab converts [x] to an SVector without pre-allocating [temp] The benchmarks reveal that latter
approach is more performant, thanks to the memory allocation avoidance and additional
optimizations provided by SVectors.

As for the last two tabs, they continue defining [x] as an SVector, but additionally treat as an
MVector. The last tab in particular does this by using to initialize [output |, whereas the
other tab explicitly specifies an MVector. Comparing these cases, the benchmarks demonstrate that
integrating MVectors into the operation yields further performance gains.

FOOTNOTES

- The recommended number of elements | provide is actually lower than the documentation's suggested (100
elements). The reason for this discrepancy is that as you approach the upper limit, the performance benefits of
static vectors compared to regular vectors decrease significantly. As a result, the time spent benchmarking with
collections of 100 elements will likely offset any potential advantage.

2 The approach based on the macro requires some caveats. For instance, it doesn't support definitions

based on local variables, thus precluding the use of | eachindex(x) |in the array comprehension, unless|x|is a global
variable.

3- For instance, is equivalent to[foo(x[1], x[2], x[31)]given a vector or tuple [x]with 3 elements.




9h. Lazy Operations

Martin Alfaro

PhD in Economics

INTRODUCTION

Computational approaches can be broadly classified into "lazy" and "eager" categories. Eager
operations are characterized by their immediate execution upon definition, providing instant access
to the results. So far, most operations on this website have fallen under this category.

In contrast, lazy operations define the code to be executed, deferring computation until the results
are actually needed. The approach is particularly valuable for operations involving heavy intermediate
computations, as lazy evaluation can sidestep unnecessary memory allocations: by fusing
operations, it becomes possible to perform intermediate calculations on the fly and fed them directly
into the final calculation.

This section provides various implementations for lazy computations. The first approach presented is
based on the so-called generators, which are the lazy analogous of array comprehensions. After this,
we'll introduce several functions from the package Iterators, which provides lazy implementations of
functions like [map |and | filter |

GENERATORS

Array comprehensions offer a convenient technique for creating vectors, using a similar syntax to for-
loops to define their elements. These elements are computed and stored right away, making array
comprehensions an eager operation. For their part, generators represent the lazy counterpart of
array comprehensions, deferring the creation of elements until they're actually needed.

In terms of syntax, generators are identical to array comprehensions, with the sole difference they're

enclosed in parentheses instead of square brackets [[ 1] Just like array comprehensions,
generators also retain the ability to add conditions and simultaneous iterate over multiple collections.


https://alfaromartino.github.io/
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[a for a in 1:10]

X
1

y = [a for a in 1:10 if a > 5]

julia>

10-element Vector{Int64}:
1
2

9
10
julia>
5-element Vector{Int64}:
6
7
8
9
10

(a for a in 1:10)

x
1

y = (a for a in 1:10 if a > 5)

julia>

Base.Generator{UnitRange{Int64}, typeof(identity)}(identity, 1:10)

The examples show that array comprehensions compute all their elements at the moment of defining
the vector, giving immediate access to them. In contrast, generators formally define an object with

type |[Base.Generator |, where operations are described, but no output is materialized.

This characteristic of generators makes them particularly useful for computing reductions with
transformed values. By producing values on-demand and fusing them with the reduction function,
generators avoid the materialization of temporary vectors, thus reducing memory allocations.

To illustrate the performance benefits this entails, let's compute the sum of all elements in a vector [y ]
In particular, is obtained by doubling each element of a vector [x]. One way to compute this
operation is by first creating the vector [y]and then sum all its elements. Alternatively, we can describe
the transformation through a generator, which bypasses the storage of the intermediate output [y
and instead feeds the transformation directly into the function. This allows the compiler to
perform the addition as a cumulative operation on scalars, thereby reducing memory usage.

x = rand(100)

function foo(x)
y = [a * 2 for a in x] # 1 allocation (same as y = x .* 2)

sum(y)
end

julia> [@btime foo($x)]
46.945 ns (1 allocation: 896 bytes)
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X = rand(100)

function foo(x)
y = (a * 2 for a in x) # 0 allocations

sum(y)
end

julia> [@btime foo($x)]
23.996 ns (0 allocations: O bytes)

x = rand(100)

foo(x) = sum(a * 2 for a in x) # 0 allocations

julia> [@btime foo($x) ]
23.996 ns (0 allocations: O bytes)

The last tab shows that generators can be incorporated directly as a function argument, resulting in a
compact syntax. Remarkably, this syntax is applicable to any function that accepts a collection as its
input.

ITERATORS

Iterators are formally defined as lazy objects that create sequential values on demand, rather than
storing them all in memory upfront. Throughout the website, we've already encountered numerous
scenarios involving iterators. A typical example of an iterator is a range, such as [1:length(x)], which
defines a sequence of numbers to be generated on the fly. Their lazy evaluation explains why the
function is needed when we want to materialize the entire sequence into a vector. Without
, iterators merely describe the numbers to be created, without actually creating and storing
them in memory.

Beyond simple ranges, we've also covered other types of iterators hat offer more specialized

functionality. They included for accessing array indices, for pairing elements

with their positions, and for combining multiple sequences.

The lazy nature of iterators makes them particularly efficient in for-loops: by generating each value as
the for-loop progresses, we eliminate unnecessary memory allocations that would arise from
materializing the list being iterated over.

x = 1:10
julia>
1:10




x = collect(1:10)

julia>

10-element Vector{Int64}:
1
2

10

The built-in package which is automatically "imported" in every Julia session, provides
multiple functions for generating lazy sequences. Additionally, it offers lazy counterparts of various
functions such as and [map] which can be accesed as [Iterators.filter| and

[Iterators.map] '

The following example demonstrates the use of these functions to avoid memory allocations of
intermediate computations.

x = collect(1:100)

function foo(x)
y = filter(a —> a > 50, x) # 1 allocation

sum(y)
end

julia> [@btime foo($x)]
53.163 ns (1 allocation: 896 bytes)

x = collect(1:100)

function foo(x)
y = Iterators.filter(a -> a > 50, x) # 0 allocations

sum(y)
end

julia> [@btime foo($x)]
55.239 ns (0 allocations: 0 bytes)

x = rand(100)

function foo(x)
y = map(a -=> a * 2, x) # 1 allocation

sum(y)
end

julia> [@btime foo($x) |
47.963 ns (1 allocation: 896 bytes)




x = rand(100)

function foo(x)
y = Iterators.map(a -> a * 2, x) # 0 allocations

sum(y)
end

julia> [@btime foo($x) |
23.972 ns (0 allocations: 0 bytes)

FOOTNOTES

' The package further extends the functionality of [Tterators], offering even more tools for working

with lazy sequences.
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INTRODUCTION

This section continues the analysis of lazy and eager operations as a means of reducing memory
allocations. The focus now shifts to broadcasting operations, which strike a balance between code
readability and performance.

Central to the upcoming discussion is the eager default behavior of broadcasting in Julia. This means
that broadcasted operations compute their outputs immediately upon execution, thereby inevitably
leading to memory allocation when applied to allocating-objects like vectors. This characteristic is
particularly relevant in scenarios involving multiple intermediate broadcasted operations, resulting in
multiple temporary, and therefore avoidable, memory allocations.

Next, we present various approaches to reduce allocations in such scenarios. We'll start highlighting
the notion of loop fusion, which allows multiple broadcasting operations to be combined into a more

efficient single operation. After this, we'll explore the package, which evaluates
broadcasting operations in a lazy manner. The technique is particularly useful for reductions requiring
intermediate transformations, entirely circumventing memory allocations for these intermediates.

HOW DOES BROADCASTING WORK?

To gain a deeper understanding of the optimizations we'll be discussing, let's first examine the internal
mechanics of broadcasting. Under the hood, broadcasting operations are converted into optimized
for-loops during compilation, rendering the two approaches computationally equivalent. In this
context, broadcasting serves as syntactic sugar, eliminating the need for explicit for-loops. This allows
developers to write more concise and expressive code, without compromising performance.

Despite the equivalence between broadcasting and for-loops, you'll often notice performance
differences in practice. These discrepancies are largely driven by compiler optimizations, rather than
inherent differences between the two approaches. Essentially, the fact that an operation supports a
broadcasted form reveals further information about its underlying structure, allowing the compiler to
automatically apply certain optimizations. In contrast, the generality of for-loops precludes this
possibility, as the same assumptions can't be taken for granted. Nevertheless, with careful manual
optimization, for-loops can always match or surpass the performance of broadcasting, thanks to their
greater flexibility and potential for fine-tuning.


https://alfaromartino.github.io/

The following code snippets demonstrate the equivalence between the two approaches. The first tab
describes the operation being performed, while the second tab provides a rough translation of
broadcasting's internal implementation. The third tab further highlights this equivalence, by providing
the exact code used. This requires including the macro in the for-loop, which is
automatically applied with broadcasting. The specific effect of this macro on computations can be
disregarded, as it'll be discussed in a later section. Its sole purpose here is to illustrate the equivalence
between the two approaches.

rand(100)

X
]

foo(x) 2 .% X

julia> [@btime foo($x)|
34.506 ns (1 allocation: 896 bytes)

X = rand(100)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = 2 * x[i]
end

return output
end

julia> [@btime foo($x)|
48.188 ns (1 allocation: 896 bytes)

X = rand(100)

function foo(x)
output = similar(x)

@inbounds for i in eachindex(x)
output[i] = 2 * x[i]
end

return output
end

julia> [@btime foo($x)|
32.832 ns (1 allocation: 896 bytes)

Warning! - About [@inbounds]

In the example provided, was added to illustrate the
internal implementation of broadcasting, rather than a

recommended practice for general use. In fact, used
incorrectly can lead to severe issues.




To understand what this macro does, Julia by default enforces bounds
checking on array indices to prevent out-of-range access (e.g., it checks
that a vector [x] with 3 elements isn't accessed at index [x[4]]). Adding
to a for-loop instructs Julia to bypass this check, thus
speeding up computations. However, it simultaneously makes our code
unsafe, including the possibility of returning incorrect results and other
more pronounced issues.

A key implication of the example is that Julia's broadcasting is eager by default, meaning that the
result is immediately computed and stored. In the example, this is reflected in being
computed and stored in [output |, which also explains the observed memory allocation.

Importantly, memory allocations under broadcasting arise even if the result isn't explicitly

stored. For example, computing involves the computation and temporary storage of [2
.* x|, before the sum is performed.

BROADCASTING: LOOP FUSION

While eager broadcasting makes results readily available, their outputs may not be important in
themselves. Instead, they could represent intermediate steps in a larger computation, with these
outputs eventually being passed as inputs to subsequent operations.

In the following, we address scenarios like this, where broadcasting is employed for intermediate
results. The first approach we explore leverages a technique called loop fusion, which combines
multiple broadcasting operations into a single loop. By doing so, the compiler can perform all
operations in a single pass over the data. This not only eliminates the creation of multiple
intermediate vectors, but also provides the compiler with a holistic view of the operations, thus
allowing for further optimizations.

Remarkably, when all broadcasting operations are nested within a single operation, the compiler
automatically implements loop fusion. However, for complex expressions, writing a single lengthy
expression can be impractical. To overcome this limitation, we'll show a method that enables us to
break down operations into partial calculations, while still preserving loop fusion. This approach is
based on the lazy design of functions definitions, making it possible to delay operations until their
eventual combination.

X rand(100)

foo(x) X .% 2 .+ X .% 3 #or @ x 2+ x * 3

julia> [@btime foo($x)]
35.361 ns (1 allocation: 896 bytes)




X = rand(100)

function foo(x)

a =X .% 2
b =x .* 3
output = a .+ b

end

julia> [@btime foo($x) |
124.420 ns (3 allocations: 2.62 KiB)

X = rand(100)

terml(a) = a * 2

term2(a) = a * 3

foo(a) = terml(a) + term2(a)

julia> [@btime foo.($x) |
34.330 ns (1 allocation: 896 bytes)

VECTOR OPERATIONS ALLOCATE AND BREAK LOOP FUSION

A common scenario where loop fusion is prevented is when a single expression combines

broadcasting and vector operations. This possibility arises because some vector operations yield
similar results to their broadcasting equivalents, making it possible to combine these operations
without dimensional mismatches. For instance, we show below that adding two vectors using E
produces the same result as summing them element-wise by employing[ . +].

[1, 2, 3]
[4, 5, 6]

foolx,y) = x .+ vy

julia
3-element Vector{Int64}:
5

7

9




X = [1, 2, 3]
y = [4, 5, 6]
foolx,y) = x +vy

julia>
3-element Vector{Int64}:
5
7
9

The same occurs with a vector product when one of the operands is a scalar.

X = [1, 2, 3]
B =2
foo(x,B) = x .*x B
julia> | foo(x,PB)
3-element Vector{Int64}:
2
4
6
X = [1, 2, 3]
B =2
foo(x,B) = x * B
julia> | foo(x,PB)
3-element Vector{Int64}:
2
4
6

OMITTING DOTS AVOIDS LOOP FUSION

Mixing vector operations and broadcasting is problematic for performance. The reason is that each
vector operation will allocate memory, in a context that operations aren't fused. In particular, the issue
arises when the following conditions are met:

e The final output requires combining multiple operations

e The operations yield the same result whether implemented through broadcasting or a vector
operation

e We mix broadcasting and vector implementations, by omitting the inclusion of some dots
If all these conditions are satisfied, Julia will partition the operations and compute each separately. The

consequence of this is the emergence of multiple temporary vectors, with each separately allocating
memory.



The following example illustrates this possibility in the extreme case where all broadcasting dots [ .-
are omitted. It demonstrates that vector operations aren't fused, even when expressed in a single
operation. Moreover, it establishes that vector operations are similar to obtaining the final result by
separately calculating each operation.

X = rand(100)

foo(x) =x* 2 + x * 3

julia> [@btime foo($x)|
129.269 ns (3 allocations: 2.62 KiB)

x = rand(100)

function foo(x)
terml = x *x 2
term2 X * 3

output = terml + term2
end

julia> [@btime foo($x) |
130.798 ns (3 allocations: 2.62 KiB)

While the previous example exclusively consists of vector operations, the same principle applies when
mixing broadcasting and non-broadcasting operations. In such cases, loop fusion is partially achieved,
with only a subset of operations being internally computed through a single for-loop.

rand(100)

X
1

foo(x)

X * 2 .+ Xx .* 3

julia> [@btime foo($x)|
85.034 ns (2 allocations: 1.75 KiB)

X = rand(100)

function foo(x)
terml = x *x 2

output = terml .+ x .*3
end

julia> [@btime foo($x)|
85.763 ns (2 allocations: 1.75 KiB)

Overall, the key takeaway from these examples is that guaranteeing loop fusion requires
appending a dot to every operator and function to be broadcasted. Note that this can be error-
prone, especially in large expressions where a single missing dot can be easily overlooked.



Fortunately, there are two alternatives that mitigate this risk.

One option is to prefix the expression with [@.], as shown in the tab [Equivalent 1] below. This

ensures that all operators and functions are broadcasted. Alternatively, all operations could be
combined into a scalar function, which you eventually broadcast. This is presented in the tab

|Equivalent 2|below.

rand(100)

x
1]

foo(x) X . % 2 .+ x .% 3

julia> [@btime foo($x)|
36.456 ns (1 allocation: 896 bytes)

rand(100)

x
1l

foo(x) = @. x * 2 + x * 3

julia> [@btime foo($x)|
36.573 ns (1 allocation: 896 bytes)

rand(100)

x
1

foo(a)

a*x2+a=*3

julia> [@btime foo.($x) |
34.536 ns (1 allocation: 896 bytes)

When multiple long operations are combined, the need to split operations is inevitable. In this case,
we can apply a similar trick as we did before, where we leverage that function definitions are
inherently lazy. Specifically, this allows us to achieve loop fusion by defining each operation as a
separate scalar function.

rand(100)

X
1]

terml(a) a *x 2
term2(a) = a * 3

foo(a)

terml(a) + term2(a)

julia> [@btime foo.($x) |
35.346 ns (1 allocation: 896 bytes)

LAZY BROADCASTING



To handle intermediate computations, we can also transform broadcasting into a lazy operation. Such

functionality is provided by the package, whose use requires prepending the [@-] macro
to the broadcasting operation. Similar to a function definition, lazy broadcasting defers the actual

computation of the operation until it's needed.

X = rand(100)
function foo(x)
terml = x .* 2

term2 = x .* 3

output = terml .+ term2

end

julia> [@btime foo($x,$y) ]
109.803 ns (3 allocations: 2.62 KiB)

X = rand(100)

function foo(x)
terml = @~ x .* 2
term2 =@~ x .* 3

output = terml .+ term2

end

julia> [@btime foo($x,$y) |
37.304 ns (1 allocation: 896 bytes)

Note that, up to this point, all the cases considered had a vector as its end result. In this context, our
goal becomes to reduce memory allocations to the single unavoidable allocation, which is given by
storage of the final result.

Instead, when scalar values are the final output, lazy broadcasting offers a significant advantage: it
enables us to completely remove memory allocations. This is because lazy broadcasting fuses
broadcasting and reduction operations, allowing the former to be computed on-the-fly. This is
illustrated in the example provided below.

# eager broadcasting (default)
X = rand(100)

foo(x) = sum(2 .* x)

julia> [@btime foo($x, $y) |
48.012 ns (1 allocation: 896 bytes)




using LazyArrays
rand(100)

X

foo(x) sum(@~ 2 .* x)

julia> [@btime foo($Xx,$y) ]
7.906 ns (0 allocations: 0 bytes)

Note that completely eliminating allocations can't be accomplished simply by using functions. This is
because functions enable the splitting of broadcasting operations, but do not fuse them with
reduction operations.

x = rand(160)

terml(a) = a * 2

term2(a) = a * 3

temp(a) = terml(a) + term2(a)

foo(x)

sum(temp.(x))

julia> [@btime foo($x,$y)]

48.307 ns (1 allocation: 896 bytes)

x = rand(100)

terml(a) = a * 2

term2(a) = a * 3

temp(a) = terml(a) + term2(a)

foo(x)

sum(@~ temp.(x))

julia> [@btime foo($x, $y) |

10.474 ns (0 allocations:

0 bytes)

X

rand(100)

function foo(x)

terml
term2
temp

output

end

)
.* 3
terml

X

X

.+ term2

sum(temp)

julia> [@btime foo($x,$y) |

13.766 ns (0 allocations:

0 bytes)

Remark

An additional advantage of is that it performs additional
optimizations when possible. As a result, you'll typically observe that




is faster than alternatives like a lazy map, despite that neither
allocates memory. This performance benefit can be appreciated in the
following comparison.

X = rand(100)

terml(a) = a * 2
term2(a) = a * 3
temp(a) = terml(a) + term2(a)

foo(x) = sum(@~ temp.(x))

julia> [@btime foo($x,$y) ]
10.474 ns (0 allocations: 0 bytes)

x = rand(100)

terml(a) = a * 2
term2(a) = a * 3
temp(a) = terml(a) + term2(a)

foo(x) sum(Iterators.map(temp, x))

julia> [@btime foo($x, $y) |
28.909 ns (O allocations: 0 bytes)
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INTRODUCTION

The previous chapters started our study of techniques for improving performance. The focus was in
particular on type stability and memory allocations, which are not only critical for achieving optimal
performance, but also universally applicable. However, specific applications can often benefit from
more specialized strategies. This chapter takes a step in this direction by introducing some of these
techniques. In particular, we offer two key insights that extend beyond any particular application, and

therefore can be applied broadly.

First, any of the new techniques we'll introduce inherently involve trade-offs. This occurs because,
after applying fundamental optimizations to operate at the performance frontier, any further gains
can only be achieved at the expense of precision, safety, or generality. This stands in contrast to
fundamental optimizations like type stability and reduced memory allocations, which may hinder
readability but don't entail compromises in other respects. The presence of these trade-offs also
explains why the techniques aren't part of Julia's default implementation, which consistently prioritizes

correctness and safety over speed.

The second important takeaway is related to the concept of code transformation via macros. This
represents a general strategy that allows developers to implement sophisticated computational
algorithms, without requiring users to grasp the underlying complexities for their applications. Macros
are particularly well-suited suited for this purpose, as they essentially take expressions in a code and
modifies it before compilation. This makes it possible, for example, to identify all operations within a

for-loop, subsequently adapting the algorithm for a more efficient computation.
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INTRODUCTION

Customized computational approaches often have an edge over general-purpose built-in solutions, as
they can tackle the unique challenges of a given scenario. However, the complexity of these
specialized techniques often deters their adoption among practitioners, who may lack the necessary
expertise to implement them. Macros offer a practical solution to bridge this gap, making specialized
computational approaches more accessible to users. They're particularly well-suited for this purpose
due to their ability to take entire code blocks as inputs and transform them into an optimized
execution approach. This capability allows practitioners to benefit from specialized algorithms,
without the need to implement them themselves.

In the upcoming sections, the role of macros in boosting performance will be central. By leveraging
them, we'll be able to effectively separate the benefits provided by an algorithm from its actual
implementation details. This decoupling will let us shift our focus from the nitty-gritty details of how to
implement algorithms, to the more practical question of when to apply them. The current section in
particular will concentrate on the procedure for applying macros, paying special attention to some
subtle considerations arising in practice.

ABOUT MACROS FOR OPTIMIZATIONS

Macros bear a resemblance to functions in that they take an input and return an output. Their primary
difference lies in that macros take an entire code block as their input, possibly yielding another code
block as its output.

This unique feature enables macros to be applied for tasks that functions can't handle. One common
application is code simplification. By automating repetitive tasks and eliminating redundant code,
macros are capable of significantly improving code readability. For instance, suppose a function
requires multiple slices of to be converted into views. Without macros, this would involve

repeatedly invoking |view(x, <indices>)| resulting in verbose and error-prone code. Instead,
prepending the function definition with will automatically handle all the slice conversions for
us.

Another application of macros is to modify how operations are computed, which is the focus of this
section. This functionality allows developers to package sophisticated optimization techniques, making
advanced solutions accessible to users. In this context, users who might not be familiar with the
underlying complexities of the method, only need to focus on selecting the most suitable
computational approach, rather than grappling with implementation details.
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While macros are powerful tools, they're not without their limitations. Their black-box nature means
that incorrect usage can lead to unexpected results or compromise computational safety. That's why
it's important to identify the suitable scenarios of each macro. Although this requires some initial
investment, it's considerably less demanding than implementing the functionality from scratch.

APPLYING MACROS IN FOR-LOOPS: @INBOUNDS AS AN EXAMPLE

One distinctive feature of Julia is its ability to execute for-loops with exceptional speed. In fact,
carefully optimized for-loops tend to reach the highest possible performance within the language. This
efficiency stems from the versatility of for-loops, which lets users fine-tune them for their specific
needs. As a result, it's no surprise that one prominent application of macros is to implement specific
computational approaches for for-loops.

To illustrate this use, let's consider the macros. Although strictly speaking this doesn't
implement a new computational approach, it does modify how for-loops are executed. Additionally,
it's simple enough to easily illustrate this role of macros.

To appreciate the impact of [@inbounds |, we first need to understand how for-loops typically behave in
Julia. By default, the language implements bounds checking: when an element is accessed
during the i-th iteration, Julia verifies that j falls within the valid range of indices for . This built-in
mechanism safeguards against errors and security issues caused by out-of-bounds access.

While bounds checking prevents bugs, it comes at a performance cost: these additional checks not
only introduce computational overhead, but also limit the compiler's ability to implement certain
optimizations. However, there are situations where iterations are guaranteed to stay within array
bounds. In those cases, we can safely boost performance by disabling bounds checking through the

macro.

Trade-Offs Entailed by @inbounds

The macro perfectly illustrates both the power and risks
associated with macro usage. When applied judiciously, it can yield
substantial performance gains, especially when multiple slices are
involved.

However, disabling bounds checking simultaneously renders code
unsafe: it increases the risk of crashes and silent errors, additionally

creating security vulnerabilities. In this context, shifts the
responsibility of applying the macro onto the user, who must be

absolutely certain that the iteration range is within the arrays' bounds.

ILLUSTRATING @INBOUNDS




Broadly speaking, using a macro within a for-loop to modify its computational approach requires its
addition at the beginning of the for-loop. For instance, to disable bounds checking for every indexed
element within a for-loop, we simply need to prepend the for-loop with [@inbounds] We can
alternatively apply individually to any specific line within the loop. Nonetheless, this
possibility is specific to [@inbounds], only arising because the macro can actually be employed even
outside for-loops.

x = rand(1_000)

function foo(x)
output = 0.

@inbounds for i in eachindex(x)
a Tog(x[i])
b exp(x[i])
output += a / b

end

return output
end

julia> [@btime foo($v, $w, $x,$y) |
5.002 us (0 allocations: 0 bytes)

x = rand(1_000)

function foo(x)
output = 0.

for i in eachindex(x)
@inbounds a

log(x[il)
@inbounds b = exp(x[i])
output +=a / b
end

return output
end

julia> [@btime Ffoo($v,$w, $x, $y)]
5.093 us (0 allocations: 0 bytes)

The performance advantages of [@inbounds | don't only come from the elimination of bounds checking
itself. Bounds checking is a form of conditional, where the iteration is executed contingent on all
indices being within range. In the next sections, we'll see that conditional statements commonly limit
the compiler's ability to apply further optimizations. Once we remove these checks, you give the
compiler more leeway to implement additional enhancements.

To illustrate such possibility, the next example shows that the application of triggers the
so-called SIMD instructions. They're a form of parallelism within a core and will be explored in the
upcoming sections.



v,w,x,y = (rand(100_000) for _ in 1:4) # it assigns random vectors to v,w,x,y

function foolv, w, x, vy)
output = 0.0

for i in 2:length(v)-1

output += v[i-1] / v[i+1] / w[i-1] * w[i+1] + x[i-1] * x[i+1] / y[i-1] *» y[i+1]
end

return output
end

julia> [@btime foo($v, $w, $x,$y) |
231.242 ps (0 allocations: 0 bytes)

v,w,x,y = (rand(100_000) for _ in 1:4) # it assigns random vectors to v,w,Xx,y

function fool(v, w, x, y)
output = 0.0

@inbounds for i in 2:length(v)-1

output += v[i-1] / v[i+1] / w[i-1] * w[i+1] + x[i-1] *» x[i+1] / y[i-1] * y[i+1]
end

return output
end

julia> [@btime foo($v, $w, $x, $y) |
154.179 ps (0 allocations: 0 bytes)

Warning! - Function Calls in For-Loop Bodies Can Disable Macro Effects

The use of functions without direct reference to slices could prevent the

application of |@inbounds| This can be observed below, where we
compare approaches with and without when a function is
involved.




v,w,x,y = (rand(100_000) for _ in 1:4) # it assigns randoA

vectors to v, w, x, y
compute(i, v,w,x,y) = v[i-1] / v[i+1] / w[i-1] * w[i+1] +
x[i-11 * x[i+1] / y[i-11 = y[i+1]

function foo(v,w,x,y)
output = 0.0

@inbounds for i in 2:length(v)-1
output += compute(i, v,w,x,y)

end

return output
end

julia> [@btime foo($v, $w, $x, $y) |
271.897 ps (0 allocations: 0 bytes)

v,w,x,y = (rand(100_000) for _ in 1:4) # it assigns randor

vectors to v, w, x, y

function fool(v,w,x,vy)
output = 0.0

@inbounds for i in 2:length(v)-1
output += v[i-1] / v[i+1] / w[i-1] * w[i+1] +
x[i-1] *» x[i+1] / y[i-1] * y[i+1]
end

return output
end

julia> \@btime foo($v,$w,$x,$y)\
154.194 ps (0 allocations: 0 bytes)

MACROS COULD BE DISREGARDED OR APPLIED AUTOMATICALLY BY
THE COMPILER

The influence of macros on code execution is complex. In many cases, macros might have no impact
at all because compilers ultimately decide the best strategy for the problem at hand. Thus, they could
already be implementing the functionality we suggest through the macro, or simply disregard it
entirely. The lack of any discernible impact is easily inferred through execution times, which remain
unchanged with and without the macro.



This occurs with the macro, in cases where compiler is already skipping bound checks.
This is only implemented automatically by the compiler in very simple cases, such as when we define
iterations by [eachindex]. In such scenarios, the compiler can recognize that memory access is safe
and automatically disable bounds checking, rendering the macro redundant.

x = rand(1_000)

function foo(x)
output = 0.

for i in eachindex(x)
output += log(x[il)
end

return output
end

julia> [@btime foo($v, $w, $x, $y) |
3.151 ps (0 allocations: 0 bytes)

x = rand(1_000)

function foo(x)
output = 0.

@inbounds for i in eachindex(x)
output += log(x[i])
end

return output
end

julia> ]@btime foo($v,$w,$x,$y)\
3.098 ps (0 allocations: 0 bytes)

Macros could also serve as a mere hint to the compiler, without dictating its use. In such scenarios, the
hint provided indicates that certain assumptions are met, allowing the compiler to implement more
aggressive optimizations. The compiler will then carefully analyze the operations involved and decide
whether the suggested approach is actually beneficial. If it is, it'll apply the optimizations. If not, it'll
disregard the hint and opt for a different approach. This determines that macros guide the compiler
towards better performance, but without imposing strict directives.

An example along these lines is [@simd] which suggests the application of SIMD instructions a
technique that we'll be explored in the next sections. When is introduced, the compiler
maintains complete autonomy in deciding whether to implement the suggested optimization. In fact,
it'll only adopt SIMD instructions if it concludes that they'll potentially improve performance in the
specific application. In the following example, is ignored by the compiler, explaining why the

execution time remains the same with and without the macro. '



x = rand(2_0600_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = if (200_000 > i > 100_000)
x[i] = 1.1
else
x[i] = 1.2
end
end

return output
end

julia> [@btime foo($x) |
1.056 ms (2 allocations: 15.26 MiB)

x = rand(2_000_000)

function foo(x)
output = similar(x)

@simd for i in eachindex(x)
output[i] = if (200_000 > i > 100_000)
x[i] = 1.1
else
x[i] * 1.2
end
end

return output
end

julia> [@btime foo($x)]
1.066 ms (2 allocations: 15.26 MiB)

FOOTNOTES

1 The fact that the code implemented is the same is confirmed by inspecting the internal code executed.
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INTRODUCTION

Single Instruction, Multiple Data (SIMD) is an optimization technique widely embraced in modern CPU
architectures. At its core, SIMD allows a single CPU instruction to process multiple data points
concurrently instead of sequentially processing each one individually. This approach can yield
substantial performance gains, particularly for workloads involving simple identical calculations
repeated across multiple data elements. '

To illustrate the power of SIMD, consider a computation consisting of four separate addition
operations. Without SIMD, you'd have to execute four distinct instructions, one for each addition.
Instead, SIMD makes it possible to bundle the four additions into a single instruction, with the CPU
processing them all at once. In an ideal scenario, the time required to complete four additions using
SIMD or one addition without it could be the same.

The efficiency of SIMD comes from its ability to leverage parallelism within a single CPU core. By
operating on vectors rather than individual elements, SIMD instructions can execute the same
operation on multiple data simultaneously. This is why SIMD is usually referred to as vectorization.

Throughout the sections, we'll cover two approaches for implementing SIMD instructions.
e Julia's native capabilities.

e The package|LoopVectorization|.

In this section, we'll concentrate on the built-in tools for applying SIMD. In particular, we'll present
conditions that trigger its automatic application. Furthermore, we'll introduce the macro, which

allows for manual implementation in for-loops. Instead, the study of | Loopvectorization|is relegated

to subsequent sections. As we'll see, this package implements more aggressive optimizations, relative
to Julia's base.

WHAT IS SIMD?

SIMD is a type of instruction-level parallelism that occurs within a single processor core. It's
particularly effective for basic arithmetic operations, such as addition and multiplication, when the
same operation must be applied to multiple data. Given the nature of these operations, it's no
surprise that one of the primary applications of SIMD is in linear algebra.

At the heart of SIMD lies the process of vectorization, where data is split into sub-vectors that can be
processed as single units. To facilitate this, modern processors include specialized SIMD registers
designed for this purpose. Desktop and laptop processors these days typically feature 256-bit wide


https://alfaromartino.github.io/

registers for vectorized operations, which can hold four 64-bit floating-point numbers.

To illustrate the workings of SIMD, consider the task of adding two vectors, each comprising four

elements. Specifically, let [x = [1, 2, 3, 4]|and |y = [10, 20, 30, 40]| In traditional scalar
processing, performing the operation would require four separate addition operations, one for
each pair of numbers. In contrast, all four additions can be performed with a single instruction under
SIMD, producing the result|[11, 22, 33, 44]|in one step.

For larger vectors, the process remains fundamentally the same. The only difference is that the
processor first partitions the vectors into sub-vectors that fit the register's capacity. After this, the
processor computes all the operations within each segment simultaneously, repeating the procedure
for each sub-vector.

BROADCASTING VS FOR-LOOPS

The previous analysis shows that SIMD applies to computations involving collections. Based on this,
we can identify two types of operations that can potentially benefit from SIMD instructions: for-
loops and broadcasting. The latter is automatically implemented by the compiler, without requiring
any special consideration from the user.

Instead, the upcoming sections will focus on the application of SIMD in for-loops. This will require
exploring the conditions under which SIMD instructions can be applied. If these conditions aren't met,
SIMD will become infeasible or reduce its effectiveness substantially. In addition to elaborating on
these conditions, we'll provide guidance on how to address scenarios that don't conform to them.

To pave the way and shift our attention to for-loops, we conclude this section by illustrating the
automatic application of SIMD in broadcasting.

SIMD IN BROADCASTING

The decision whether to apply SIMD instructions is always handled by the compiler, which relies on
heuristics to determine when it's beneficial to do so. One situation where Julia strongly favors the
application of SIMD is with broadcasting, as can be noticed in the following example.



X = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = 2 / x[i]
end

return output
end

julia> [@btime foo($x)|
789.564 us (2 allocations: 7.629 MiB)

rand(1_000_000)

x
1]

foo(x)

2 ./ x

julia> [@btime foo($x) |
414.250 ps (2 allocations: 7.629 MiB)

The example compares the same operation implemented using a for-loop and broadcasting. While

broadcasting automatically leverages SIMD, this isn't necessarily the case with for-loops. Indeed, in

this particular example, we'd need to explicitly instruct the compiler to enable SIMD, which accounts

for the observed time differences.

FOOTNOTES

1-SIMD isn't exclusive to CPUs. In fact, GPUs also take advantage of it. They're a natural fit for SIMD, as their
architecture was conceived for parallel processing of simple identical operations.
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INTRODUCTION

Broadcasting heavily favors the application of SIMD instructions. In contrast, whether and when for-
loops apply SIMD is more complex. Furthermore, the heuristics of the compiler, while powerful, aren't
without flaws. Indeed, it's entirely possible that SIMD is implemented when it actually reduces
performance or not applied when it would've been advantageous. To address this, Julia provides the
macro to manually implement SIMD, giving developers a more granular control over the

optimization process.

An effective application of SIMD requires identifying the conditions under which this optimization can
be applied. Failing to meet these criteria can render SIMD infeasible or necessitate code adaptations
that end up slowing down computation. The ideal conditions for leveraging SIMD instructions are:
» Independence of Iterations: Except for reductions, which are specifically handled to ensure their
feasibility.
e Unit Strides: Elements in collections must be accessed sequentially.

* No Conditional Statements: The loop body should consist solely of straight-line code.

In the upcoming sections, we'll elaborate on each of these items, additionally providing guidance on
how to address scenarios not conforming to them. This section in particular exclusively focuses on the
independence of iterations.

Warning! - Determining Whether SIMD Has Been Implemented

Assessing whether SIMD instructions are implemented requires
inspecting the compiled code. Due to the complexity of this approach,
we'll instead rely on execution times as a practical indicator.

REMARKS ABOUT @SIMD IN FOR-LOOPS

Recall from the previous section that the impact of macros on computational methods is intricate. The

reason is that macros only serve as a hint to the compiler, rather than a strict directive. Consequently,
they suggest techniques that the compiler may eventually discard or would have implemented
regardless—the compiler has the final say on which optimizations are worth adopting. In this context,
the inclusion of [@simd]in a for-loop is far from a guarantee that SIMD will actually be implemented.


https://alfaromartino.github.io/
http://localhost:8000/PAGES/10b_macrosAlgorithms/#macros_could_be_disregarded_or_applied_automatically_by_the_compiler

Furthermore, it's notoriously difficult to predict whether SIMD instructions are beneficial in particular
scenarios. This is due to several factors. Firstly, different CPU architectures provide varying levels of
support for SIMD instructions. ' This diversity in SIMD capabilities means that the benefits of SIMD
tend to vary greatly by hardware.

Second, as we already mentioned, it's hard to anticipate when and how SIMD will be applied in our
code. The compiler relies on sophisticated heuristics to determine when SIMD may be advantageous,
but they aren't infallible. Indeed, it's entirely possible that SIMD is implemented when it actually
reduces performance or not applied when it would've been advantageous.

Despite these complexities, structuring operations in certain ways can improve the likelihood of
implementing SIMD beneficially. By identifying these conditions, we'll be able to write code that's more
amenable to SIMD optimization. It's worth remarking, though, that the recommendations we'll
present should be interpreted as general principles, rather than absolute rules. Given the
complexity of SIMD, benchmarking remains necessary to validate the existence of any performance
improvement.

Safety of SIMD

Strictly speaking, SIMD is a form of parallelization. We'll see in
subsequent sections that parallelization may render code unsafe and
lead to catastrophic errors when used improperly. doesn't
involve these types of risks, since it's been designed to apply only when
it's safe to do so. Specifically, the compiler will disregard SIMD if the
conditions for its safe application aren't met.

INDEPENDENCE OF ITERATIONS

To effectively apply SIMD, iterations should be independent. This means that no iteration should
depend on the results of previous iterations or affect the results of subsequent ones. When this
condition is met, each iteration can be executed in parallel. A typical scenario is when we need to
apply some function f (z;) to each element z; of a vector .

In the following, we illustrate this case via a polynomial transformation of [x]. The transformation will
be done through for-loops with and without SIMD. We'll also compare these approaches with
broadcasting, which applies SIMD automatically.

Importantly, as we'll explain in a subsequent section, applying in for-loops requires the
macro. We'll see that, essentially, checking index bounds introduces a condition, giving
rise to execution branches that hinder or directly prevent the application of SIMD.



x = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = x[i] / 2 + x[i]*2 / 3
end

return output
end

julia> [@btime foo($x)|
806.606 ps (2 allocations: 7.629 MiB)

x = rand(1_000_000)

function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = x[i] / 2 + x[i]*2 / 3
end

return output
end

julia> [@btime foo($x) |
464.734 ps (2 allocations: 7.629 MiB)

x = rand(1_000_000)

foo(x) =@. x/ 2+ x"2/ 3

julia> [@btime foo($x)|
447 .074 ps (4 allocations: 7.629 MiB)

A SPECIAL CASE OF DEPENDENCE: REDUCTIONS

SIMD requires that iterations are independent. One exception to this rule is given by reductions, which

have been carefully designed for their proper handling.

Julia leverages SIMD automatically for reductions involving integers. Instead, reductions with floating-

point numbers require the explicit addition of the macro. The following example demonstrates

this fact. For the case of integers, we see that there are no differences in execution times with and

without [@simd].



x = rand(1:10, 10_6000_000) # random integers between 1 and 10

function foo(x)
output = 0

for a in x
output += a
end

return output
end

julia> [@btime foo($x) |
2.606 ms (0 allocations: 0 bytes)

x = rand(1:10, 10_000_000) # random integers between 1 and 10

function foo(x)
output = 0

@simd for a in x
output += a
end

return output
end

julia> [@btime foo($x)]
2.636 ms (0 allocations: 0 bytes)

This behavior contrasts with a sum reduction consisting of floating-point operations, as shown below.

x = rand(10_000_000)

function foo(x)
output = 0.0

for a in x
output += a
end

return output
end

julia> [@btime foo($x)]
5.033 ms (0 allocations: 0 bytes)




X = rand(10_000_000)

function foo(x)
output = 0.0

@simd for a in x
output += a
end

return output
end

julia> [@btime foo($x) |
2.753 ms (0 allocations: 0 bytes)

Why Floating Points Are Treated Differently

Unlike integers, addition of floating-point numbers doesn't obey
associativity: due to the inherent imprecision of floating-point
arithmetic, may not be exactly equal to [x+(y+z)]. This is one
of several reasons why floating-point numbers are distinct from
mathematical real numbers: they are finite-precision approximations
that don't always follow the same mathematical properties we expect
from real numbers.

The following code shows this feature of floating points.

x =0.1+ (0.2 +0.3)

julia>
0.6

x = (0.1 +0.2) +0.3

julia>

0.6000000000000001

By instructing the compiler to ignore the non-associativity of floating-
point arithmetic, SIMD instructions can optimize performance by
reordering terms. However, this approach assumes that the operations
do not rely on a specific order of operations. Fortunately, this
assumption rarely causes issues in scientific applications, as they
typically involve mathematical models that inherently assume real
number properties from the outset.




FOOTNOTES

1 For instance, x86 architectures (Intel and AMD processors) offer SSE (Streaming SIMD Extensions) and AVX
(Advanced Vector Extensions). In turn, each comprises variants supporting different vector widths and operations
(e.g., the variant AVX-512 in Intel Xeon processors).
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INTRODUCTION

SIMD improves computational performance by simultaneously executing the same operation on
multiple data elements. Technically, this is achieved through the use of specialized vector registers,
which can hold several values (e.g., 4 floating-point numbers or 8 integers). They allow operations such
as multiple additions or multiplications to be completed with a single instruction.

For SIMD to fully exploit this vector-based processing, data should be organized and accessed in
memory in specific ways. Two fundamental concepts for understanding this are contiguous memory
layout and unit stride access.

Contiguous memory layout means that data elements reside in adjacent memory addresses,
therefore not exhibiting gaps. Newly allocated arrays satisfy this condition, enabling the load of entire
segments directly into vector registers. In contrast, array views reference the original data structure,
and thus don't guarantee contiguity. This can potentially result in highly irregular memory access
patterns.

In addition, strides refer to the step size between consecutive memory accesses, with unit strides in
particular entailing that elements are accessed sequentially. For example, consider a freshly allocated

vector . Then, accessing its elements through | eachindex(x) | (or equivalently [1:length(x) |) ensures
a unit stride, as each access moves sequentially to the next element in memory. This contrasts with

ranges having a non-unit stride such as [1:2:1ength(x) | or indices with no predictable pattern (e.g.,

[[1, 5, 3, 4]|asanindex vector).

When it comes to performance, SIMD is most effectively applied when data is stored in a
contiguous memory block and accessed in a unit stride pattern. This has significant practical
implications for creating slices, which can take the form of copies or views. Essentially, this choice
gives rise to a trade-off, as views reduce memory allocations but at the expense of hindering
computational efficiency. This section explores such a decision.

REVIEW OF INDEXING

For the explanations, we'll utilize the various methods for creating slices, with each differing in how
indices are defined: vector indexing, Boolean indexing, and ranges. We present the examples used for
each, and then proceed to their explanation.


https://alfaromartino.github.io/

[10, 20, 30]

x
1

indices = sortperm(x)
elements = x[indices] # equivalent to 'sort(x)’

julia> [sorted_indices|
3-element Vector{Int64}:
1

2

3

julia> [sorted_elements |
3-element Vector{Int64}:

10

20

30

X = [2, 3, 4, 5, 6]

indices_1 = 1:1length(x) # unit strides, equivalent to 1:1:length(x)
indices_2 = 1:2:length(x) # strides two

julia> [collect(indices_1) ]|
5-element Vector{Int64}:
1

a b~ wWwN

julia> [collect(indices_2) |
3-element Vector{Int64}:

1

3

5
X = [20, 10, 30]
indices =x .> 15
elements = x[indices]

julia> [sorted_indices|
3-element BitVector:

1

0

1

julia> [sorted_elements]
2-element Vector{Int64}:
20

30

As for vector indexing, the demonstrations will be based on the function [sortperm] Given some
vector [x] this function is such that, while returns a vector with [x]'s elements sorted in
ascending order, returns the corresponding indices of these elements.



Similarly, ranges can be understood as a special case of vector indexing. They differ in that ranges
lazily reference consecutive elements for some given strides. Recall that strides represent the gap
between successive elements, and they're included in between the first and last index, i.e. |<first

index>:<stride>:<last index>| The absence of a stride implicitly assumes a step equal to 1.

While vector indexing and ranges reference the indices of [x] Boolean indexing returns a Boolean
vector where |1 | indicates the element must be kept. This approach will be used for the creation of
slices through broadcasted conditions, as in the example provided.

CONTIGUOUS BLOCKS IN MEMORY

In the section discussing decreases in memory allocations, we highlighted the benefits of using views

over copies when handling slices. Specifically, views maintain references to the original data, thereby
avoiding the cost of additional memory allocation. However, views can lead to irregular memory
access patterns if data are too scattered. This is why this section also remarked that copies could
outperform views in some scenarios. We're now in a position to explain in more depth why this

occurs.

Creating copies of some data structure involves allocating the information in a new contiguous block
of memory. This ensures that all elements are stored sequentially, thus offering two key advantages: a
quicker fetching of elements and a more effective use of SIMD instructions.

To illustrate this, consider retrieving books from a library. If every book you need resides on a single
shelf, collecting them is straightforward—you move once, grab the entire stack, and proceed. This
mirrors contiguous memory access. Conversely, if the books are dispersed across different floors and
sections, each retrieval demands additional time and effort, akin to non-contiguous access.

In addition to this, our recollection of books would be even more efficient if we had a cart capable of
carrying multiple books at once—SIMD operations act like this cart. Note that even without such a
cart, the act of gathering contiguous books remains inherently faster, as the physical effort (or
computational cycles) is minimized. In other words, the benefits of SIMD are on top of the faster
memory access.

VECTOR AND BOOLEAN INDEXING

The following examples highlight the two advantages from contiguous memory access. To isolate their

performance effect, we create the slices outside the function to be benchmarked. In this way, the
functions we'll present don't entail memory allocations.

For the case of vector indexing:


http://localhost:8000/PAGES/09d_views/
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rand(5_000_000)

x
1

indices = sortperm(x)
y

@view x[indices]

function foo(y)
output = 0.0

for a in y
output += a
end

return output
end

julia> |@btime foo($y)|
21.481 ms (0 allocations: O bytes)

rand(5_000_000)

x
1

indices = sortperm(x)
y @view x[indices]

function foo(y)
output = 0.0

@simd for a in vy
output += a
end

return output
end

julia> [@btime foo($y)]
20.754 ms (0 allocations: O bytes)

rand(5_000_000)

X
1

indices = sortperm(x)
y x[indices]

function foo(y)
output = 0.0

for a iny
output += a
end

return output
end

julia> [@btime foo($y)]
2.281 ms (0 allocations: 0 bytes)




rand(5_000_000)

x
1

indices = sortperm(x)
y x[indices]

function foo(y)
output = 0.0

@simd for a in y
output += a
end

return output
end

julia> [@btime foo($y) ]|
902.847 ps (0 allocations: 0 bytes)

while for Boolean indexing:

rand(5_000_000)

X
1l

indices = x .> 0.5
y @view x[indices]

function foo(y)
output = 0.0

for a in y
output += a
end

return output
end

julia> [@btime foo($y)]
2.206 ms (0 allocations: 0 bytes)




rand(5_000_000)

X
1

indices = x .> 0.5
y @view x[indices]

function fool(y)
output = 0.0

@simd for a in y
output += a
end

return output
end

julia> [@btime foo(S$y)]
1.878 ms (0 allocations: 0 bytes)

rand(5_000_000)

x
1

indices = x .> 0.5
y x[indices]

function fool(y)
output = 0.0

for a in y
output += a
end

return output
end

julia> |@btime foo($y)|
1.015 ms (0 allocations: 0 bytes)

rand(5_000_000)

x
1

indices = x .> 0.5
y x[indices]

function fool(y)
output = 0.0

@simd for a in vy
output += a
end

return output
end

julia> |@btime foo($y)|
246.526 ps (0 allocations: 0 bytes)




Finally, comparing unit strides with non-unit strides:

rand(1_000_000)
@view x[1:2:length(x)]

function fool(y)
output = 0.0

for a in y
output += a
end

return output
end

julia> [@btime foo($y)]
902.479 pus (0 allocations: 0 bytes)

rand(1_000_000)
@view x[1:2:length(x)]

function foo(y)
output = 0.0

@simd for a in vy
output += a
end

return output
end

julia> [@btime foo($y)]
889.059 pus (0 allocations: 0 bytes)

rand(1_000_000)
x[1:2:1length(x)]

function fool(y)
output = 0.0

for a iny
output += a
end

return output
end

julia> [@btime foo(S$y)]
196.497 ps (0 allocations: 0 bytes)




rand(1_000_000)
x[1:2:length(x)]

X
1l

function fool(y)
output = 0.0

@simd for a in vy
output += a
end

return output
end

julia> [@btime foo($y) ]|
38.274 ps (0 allocations: 0 bytes)

SOME REMARKS

Note that views don't necessarily impede a sequential memory access. If the view consists of
sequential elements, then we'd obtain the same performance relative to a copy created outside the
function.

rand(1_000_000)

X
1

indices = 1:length(x)
y @view x[indices]

function fool(y)
output = 0.0

@simd for a in y
output += a
end

return output
end

julia> [@btime foo($y)]
76.950 ps (O allocations: 0 bytes)




rand(1_000_000)

X
1l

indices = 1:length(x)
y x[indices]

function foo(y)
output = 0.0

@simd for a in vy
output += a
end

return output
end

julia> [@btime foo($y)]
76.777 ps (0 allocations: 0 bytes)

A corollary of this example is that views should be employed in cases like this, as they additionally
avoid memory allocations.

Another remark is that storing elements contiguously is only a necessary condition for contiguous
memory access. To demonstrate this, let's consider a scenario where we access vectors through the
ranges.

Specifically, consider a vector [x]. Moreover, there's another vector that comprises the same
elements as[x], but with zeros placed in between. Formally:

X_size = 1_000_000

rand(x_size)

x
1

y = zeros(eltype(x),x_size * 2)
temp = view(y, 2:2:1length(y))
temp .= X

julie>

3-element Vector{Float64}:
0.906299638797481
0.44349373245960455
0.7456733811393941

julia>

6-element Vector{Float64}:
0.0

0.906299638797481

0.0

0.44349373245960455

0.0

0.7456733811393941




Given this, we'd get the same value whether we add all elements from or add all elements in |Z
skipping zeros. However, the results below reveal that, despite both and being contiguous

blocks in memory, unit-stride access only holds for . This explains the differences in the
performance observed.

function foo(x)
output = 0.0

@inbounds @simd for i in 1:length(x)
output += x[i]
end

return output
end

julia> ]@btime foo($y)\
78.349 ps (0 allocations: 0 bytes)

function foo(y)
output = 0.0

@inbounds @simd for i in 2:2:length(y)
output += y[i]
end

return output
end

julia> [@btime foo($y)]
188.483 us (0 allocations: 0 bytes)

COPIES VS VIEWS: OVERALL EFFECTS

When slices are created, the choice between copies and views requires weighing in the overhead of
additional memory allocations against the performance benefits of sequential memory accesses
(including a more performant application of SIMD).

One scenario where views always outperform copies was given above, where the view elements are
accessed sequentially. Instead, a common scenario where copies tend to outperform views is when we
need to perform multiple operations over the same slice. In this case, the cost of an additional
memory allocation is usually outweighed by the performance benefits of contiguous memory access.
This is illustrated below.



X rand(5_000_000)
indices = sortperm(x)

function foo(x, indices)
y = @view x[indices]

outputl, output2, output3 = (0.0 for _ in 1:3)

@simd for a in y
outputl += a~(3/2)
output2 +=a / 3
output3 += a * 2.5

end

return outputl, output2, output3
end

julia> [@btime foo(S$y)]
248.861 ms (0 allocations: 0 bytes)

X rand(5_000_000)
indices = sortperm(x)

function foo(x, indices)
y = x[indices]

outputl, output2, output3 = (0.0 for _ in 1:3)

@simd for a in vy
outputl += a~(3/2)
output2 += a / 3
output3 += a * 2.5

end

return outputl, output2, output3
end

julia> |@btime foo($y)|
125.033 ms (2 allocations: 38.147 MiB)

In general, though, benchmarking is the only way to decide whether copies or views are faster. For
instance, views are faster in the following example:



X rand(5_000_000)
indices = sortperm(x)

function foo(x, indices)
y = @view x[indices]
output = 0.0

@simd for a in y
output += a
end

return output
end

julia> [@btime foo($x, $indices) |
22.741 ms (0 allocations: 0 bytes)

rand(5_000_000)
indices = sortperm(x)

X

function foo(x, indices)
y = x[indices]
output = 0.0

@simd for a in y
output += a
end

return output
end

julia> [@btime foo($x, $indices) |
36.151 ms (2 allocations: 38.147 MiB)

Instead, the following scenario establishes that an approach with copies outperforms views.

X rand(5_000_000)
indices = sortperm(x)

function foo(x, indices)
y = @view x[indices]
output = 0.0

@simd for a in vy
output += a~(3/2)
end

return output
end

julia> [@btime foo($x, $indices) |
268.653 ms (0 allocations: 0 bytes)




X rand(5_000_000)
indices = sortperm(x)

function foo(x, indices)
y = x[indices]
output = 0.0

@simd for a in vy
output += a~(3/2)
end

return output
end

julia> [@btime foo($x, $indices) |
135.816 ms (2 allocations: 38.147 MiB)
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BRANCHES

SIMD accelerates computations by executing the same set of instructions in parallel across multiple
data elements. Yet, certain programming constructs, particularly conditional statements, can severely
degrade SIMD efficiency. The issue arises since conditional statements inherently lead to different
instruction paths, thus disrupting the single instruction execution that SIMD relies on. While the
compiler attempts to mitigate this issue by transforming code into SIMD-compatible forms, these
adaptations often incur a performance penalty.

This section explores strategies for efficiently applying SIMD in the presence of conditional operations.
We'll first examine scenarios where the compiler introduces conditional statements as an artifact of its
internal computation techniques. By employing alternative coding strategies, we'll show how these
conditional statements can be bypassed.

After this, we'll explore conditional statements that are intrinsic to program logic and therefore
unavoidable. This includes standard scenarios where conditions are explicitly introduced in the code.
In this respect, we'll revisit the usual approaches to expressing conditions, focusing on their internal
implementation. We'll outline their relative strengths and limitations, indicating which approaches are
more conducive to SIMD optimizations. Finally, we'll show that conditional statements can be
equivalently recast as algebraic operations, which effectively removes the branching logic that disrupts
SIMD execution.

TYPE STABILITY AND BOUNDS CHECKING AS AVOIDABLE
CONDITIONS

Two patterns in Julia introduce hidden branches that hurt SIMD performance: type-unstable functions
and bounds checking in array indexing. These conditions arise internally from compiler decisions,
rather than explicit code, making them easy to overlook.

When a function is type-unstable, Julia generates multiple execution branches, one for each type.
Those extra branches, while invisible to you, still disrupt the uniform instruction flow required by
SIMD. The remedies for this case are the same as those for fixing type instabilities. Regardless of any
SIMD consideration, recall that you should always strive for type stability. Type instability is a major
performance bottleneck, with any attempt to achieve high performance becoming nearly impossible
without addressing it.


https://alfaromartino.github.io/

The other source of hidden conditionals arises in for-loops, which perform bounds checking by
default. This operation represents a subtle form of conditional execution, where each iteration is
executed only when indices remain within bounds.

In relation to this scenario, the example below demonstrates two key insights. First, merely adding

can be enough to induce the compiler to apply SIMD instructions, rendering [@simd
annotations redundant for performance improvements. This explains why using |@inbounds @simd]in

the example has a negligible impact on execution times. ' Second, the example highlights that adding
“@inbounds’ is a necessary precondition for the application of SIMD. Simply using on its
own won't trigger the implementation of SIMD instructions, as the compiler may still be hindered by
the bounds checks. Overall, if we aim to apply SIMD in a for-loop, we should prepend it with

|@inbounds @simd |

X = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = 2/x[il]
end

return output
end

julia> [@btime foo($x) ]
775.469 us (2 allocations: 7.629 MiB)

X = rand(1_000_000)

function foo(x)
output = similar(x)

@simd for i in eachindex(x)
output[i] = 2/x[il]
end

return output
end

julia> [@btime foo($x)]
792.687 us (2 allocations: 7.629 MiB)




X = rand(1_000_000)

function foo(x)
output = similar(x)

@inbounds for i in eachindex(x)
output[i] = 2/x[i]
end

return output
end

julia> [@btime foo($x) |
474.154 ps (2 allocations: 7.629 MiB)

x = rand(1_000_000)

function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = 2/x[i]
end

return output
end

julia> [@btime foo($x)]
452.921 ps (2 allocations: 7.629 MiB)

Broadcasting and For-Loops

Broadcasting disables bounds checking and strongly favors SIMD by
default, often making it appear more performant than a simple for-loop.
Despite this, broadcasting essentially serves as a concise notation for
implementing a for-loop. As the example below demonstrates, a for-

loop that has been optimized with and will typically

exhibit a similar level of performance to a broadcasted operation.

rand(1_000_000)
2 ./ x

X
foo(x)

julia> [@btime foo($x) |
431.487 ps (2 allocations: 7.629 MiB)




X = rand(1_000_000)

function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = 2/x[il]
end

return output
end

julia> [@btime foo($x) ]
435.973 ps (2 allocations: 7.629 MiB)

X = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = 2/x[i]
end

return output
end

julia> [@btime foo($x)]
809.359 pus (2 allocations: 7.629 MiB)

APPROACHES TO CONDITIONAL STATEMENTS

When conditions are part of the program's logical flow and therefore unavoidable, we need to inquire
on what approach is better for the introduction.

Specifically, conditional statements can be evaluated either eagerly or lazily. To illustrate, let's consider
the computation of but only if certain condition |C|is met. A lazy approach evaluates whether
holds true, before proceeding with the computation of [1 + 1] Thus, the operation is deferred until
it's confirmed that | C| holds. In contrast, an eager approach computes , regardless of whether
is satisfied. If turns out to be false, the computation remains unused.

When conditional statements are applied only once, a lazy approach is almost always more
performant as it avoids needless computations. However, inside a for-loop, SIMD can compute
multiple operations simultaneously. Consequently, it may be beneficial to evaluate all conditions and
branches upfront, selecting the relevant branches afterward. The possibility is especially true when
branches involve inexpensive computations.



In Julia, whether a conditional statement is evaluated lazily or eagerly depends on how it's written.
Next, we explore this nuance in more detail.

IFELSE VS IF

The function in Julia follows an eager evaluation strategy, where both the condition and
possible outcomes are computed before deciding which result to return. In contrast, and [&&
favor lazy computations, only evaluating the necessary components based on the truth value of the
condition.

The following example demonstrates this computational difference through a reduction operation
that's contingent on a condition. 2

x = rand(1_000_000)

function foo(x)
output = 0.0

for i in eachindex(x)
if x[i] > 0.5
output += x[i]/2
end
end

return output
end

julia> [@btime foo($x)|
415.373 ps (0 allocations: O bytes)

X = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
if x[i] > 0.5
output += x[i]/2
end
end

return output
end

julia> [@btime foo($x)|
414.155 ps (0 allocations: 0 bytes)




X = rand(1_000_000)

function foo(x)
output = 0.0

for i in eachindex(x)
output += ifelse(x[i] > 0.5, x[il/2, ©)
end

return output
end

julia> [@btime foo($x) |
393.046 ps (0 allocations: O bytes)

x = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += ifelse(x[i] > 0.5, x[il/2, ©)
end

return output
end

julia> [@btime foo($x)]
87.192 pus (0 allocations: 0 bytes)

As the example reveals, an eager computation doesn't automatically imply the application of SIMD.
This is precisely why is included, which provides a hint to the compiler that vectorizing the
operation might be beneficial. In fact, we'll show later that adding when conditions comprise
multiple statements could prompt the compiler to vectorize conditions, while still relying on a lazy
evaluation.

It's also worth remarking that applying SIMD instructions doesn't necessarily increase performance.
The example below demonstrates this point, where the compiler adopts a SIMD approach through

[ifetse]

X rand(5_000_000)

output = similar(x)

function foo! Coutput,x)
for i in eachindex(x)
output[i] = ifelse(x[i] > 0.5, x[i]/2, ©)
end
end

julia> [foo!($output, $x) |
2.806 ms (0 allocations: 0 bytes)




rand(5_000_000)
output = similar(x)

X

function foo! (output,x)
@inbounds for i in eachindex(x)
output[i] = ifelse(x[i] > 0.5, x[il/2, ©)
end
end

julia> | foo!($output, $x) |
2.888 ms (0 allocations: 0 bytes)

rand(5_000_000)
similar(x)

X
output

function foo! (output,x)
@inbounds @simd for i in eachindex(x)
output[i] = ifelse(x[i] > 0.5, x[il/2, ©)
end
end

julia> [foo! ($output, $x) |
16.026 ms (0 allocations: O bytes)

TERNARY OPERATORS

Ternary operators are an alternative approach for conditional statements, consisting of the form

|[<condition> ? <action if true> : <action if false>| Unlike the previous methods, this form

relies on heuristics to determine whether an eager or lazy approach should be used. The decision
depends on which strategy would more likely be faster in the application considered.

For the illustrations, we'll consider examples where we directly add and in each

approach.

DIFFERENT CHOICES

Starting with the same example as above, we show that the ternary operator could choose an eager
approach.



x = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
if x[i] > 0.5
output += x[i]/2
end
end

return output
end

julia> [foo! ($output, $x) |
422.480 ps (0 allocations: O bytes)

x = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += ifelse(x[i]>0.5, x[i]/2, 0)
end

return output
end

julia> | foo! ($output, $x) |
85.895 pus (0 allocations: 0 bytes)

x = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += x[i]>0.5 ? x[i]l/2 : ©
end

return output
end

julia> | foo! ($output, $x) ]
87.881 pus (0 allocations: 0 bytes)

Instead, the ternary operator implements a lazy approach in the following example.



x = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
if x[i] > 0.99
output += log(x[il)
end
end

return output
end

julia> [foo! ($output, $x) |
405.304 ps (0 allocations: O bytes)

x = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += ifelse(x[i] > 0.99, log(x[i]), ©)
end

return output
end

julia> | foo! ($output, $x) |
3.470 ms (O allocations: 0 bytes)

x = rand(1_000_000)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += x[i]>0.99 ? log(x[i]) : ©
end

return output
end

julia> | foo! ($output, $x) ]
421.493 ps (0 allocations: O bytes)

TERNARY OPERATOR COULD CHOOSE A LESS PERFORMANT APPROACH

It's worth remarking that the method chosen by the ternary operator isn't foolproof. In the following

scenario, it actually chooses the slowest approach.



X rand(5_000_000)

output = similar(x)

function foo! (output,x)
@inbounds @simd for i in eachindex(x)
if x[i] > 0.5
output[i] = log(x[i])
end
end
end

julia> [ foo! ($output, $x) |
26.620 ms (0@ allocations: 0 bytes)

rand(5_000_000)
output = similar(x)

X

function foo! (output,x)
@inbounds @simd for i in eachindex(x)
output[i] = ifelse(x[i] > 0.5, log(x[i]), ©)
end
end

julia> [foo!($output, $x) |
16.864 ms (0@ allocations: 0 bytes)

rand(5_000_000)
output = similar(x)

X

function foo! (output,x)
@inbounds @simd for i in eachindex(x)
output[i] = x[i]>0.5 ? log(x[i]) : ©
end
end

julia> [foo!($output, $x) |
26.517 ms (0 allocations: 0 bytes)

SCENARIOS UNDER WHICH EACH APPROACH IS BETTER

As a rule of thumb, an eager approach is potentially more performant when branches comprise

simple algebraic computations. On the contrary, conditional statements with computational-

demanding operations will more likely benefit from a lazy implementation. In fact, this is a

heuristic that ternary operators commonly follow.

To demonstrate this, the following example considers a conditional statement where only one branch

has a computation, which in turn is straightforward. An eager approach with SIMD is faster, and

coincides with the approach chosen when a ternary operator is chosen.



X = rand(1_000_000)
condition(a) = a > 0.5
computation(a) = a * 2

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
if condition(x[il)
output += computation(x[il)
end
end

return output
end

julia> |foo!($output,$x) |
416.681 ps (0 allocations: O bytes)

X = rand(1_000_000)
condition(a) =a > 0.5
computation(a) = a * 2

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += ifelse(condition(x[i]), computation(x[i]), ©)
end

return output
end

julia> | foo! ($output, $x) ]
86.242 pus (0 allocations: 0 bytes)

X = rand(1_000_000)
condition(a) =a > 0.5
computation(a) = a * 2

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += condition(x[i]) ? computation(x[i]) : ©
end

return output
end

julia> [foo! ($output, $x) |
86.370 us (0 allocations: 0 bytes)




Instead, the following scenario considers a branch with more computational-intensive calculations. In
this case, a lazy approach is faster, which is the approach implemented by the ternary operator.

X rand(2_000_000)
a > 0.5

exp(a)/3 - log(a)/2

condition(a)
computation(a)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
if condition(x[il])
output += computation(x[i])
end
end

return output
end

julia> | foo! ($output, $x) |
12.346 ms (0 allocations: O bytes)

X = rand(2_000_000)
condition(a) =a > 0.5
computation(a) = exp(a)/3 - log(a)/2

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += ifelse(condition(x[i]), computation(x[i]), ©)
end

return output
end

julia> [foo! ($output, $x) |
16.552 ms (@ allocations: 0 bytes)




rand(2_000_000)
a > 0.5
exp(al)/3 - log(a)/2

X
condition(a)
computation(a)

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += condition(x[i]) ? computation(x[i]) : ©
end

return output
end

julia> [foo! ($output, $x) |
12.492 ms (0 allocations: O bytes)

VECTOR OF CONDITIONS

Next, we consider scenarios where you already have a vector holding conditions. This could occur
either because the vector is already part of your dataset, or because the conditions will be reused
multiple times over your code, in which case storing the conditions is worthy.

Storing conditions in a vector could be done through an object with type |Vector{Bool}| or

[BitVector] The latter is the default type returned by Julia, as when you define objects like [x .> 0]

Although this type offers certain performance advantages, it can also hinder the application of SIMD.
In cases like this, transforming|BitVector |to |Vector{Bool} | could speed up computations.

The following example demonstrates this, where the execution time is faster even considering the
vector transformation.

X rand(1_000_000)
bitvector = x .> 0.5

function foo(x,bitvector)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = ifelse(bitvector[i], x[il/i, x[i]*i)
end

return output
end

julia> | foo($x,$bitvector) |
3.393 ms (2 allocations: 7.629 MiB)




X rand(1_000_000)
bitvector = x .> 0.5

function foo(x,bitvector)
output = similar(x)
boolvector = Vector(bitvector)

@inbounds @simd for i in eachindex(x)
output[i] = ifelse(boolvector[i], x[il/i, x[i]*i)
end

return output
end

julia> [foo($x, $hitvector) ]
862.798 ps (4 allocations: 8.583 MiB)

No Vector of Conditions

The conclusions stated here assumes that you already have the vector
holding the conditions. If this isn't the case and you want to apply SIMD
instructions, you should implement without a vector of
conditions. This allows you to avoid memory allocations, while still
applying SIMD effectively. The following example illustrates this point. >

X = rand(1_000_000)

function foo(x)
output = similar(x)
bitvector = x .> 0.5

@inbounds @simd for i in eachindex(x)
output[i] = ifelse(bitvector[i], x[il/i, x[il*i)
end

return output
end

julia>

3.628 ms (6 allocations: 7.753 MiB)




X = rand(1_000_000)

function foo(x)

output = similar(x)
boolvector = Vector{Bool}(undef,length(x))
boolvector .= x .> 0.5

@inbounds @simd for i in eachindex(x)
output[i] = ifelse(boolvector[i], x[il/i, x[i]*i)
end

return output
end

jutia>

774.952 ps (4 allocations: 8.583 MiB)

x = rand(1_000_000)

function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = ifelse(x[i]>0.5, x[il/i, x[il*i)
end

return output
end

juties

501.114 ps (2 allocations: 7.629 MiB)

ALGEBRAIC OPERATIONS AS COMPOUND CONDITIONS

We leverage algebraic equivalences to express conditions in ways that allow us to avoid the creation of
branches. Mathematically, given a set {b;},_; where b; € {0,1}:
e all conditions are satisfied when

e atleast one condition is satisfied when

n

1-JJa-e)=1

i=1

In terms of Julia, given two Boolean scalars [c1] and [c2] these equivalences become
e [cl && c2]is[Bool(cl * c2)]




e [c1 || c2]is[Bool(1 - !c1 * Ic2)]|

For instance, with for-loops:

rand(1_000_000)
rand(1_000_000)

< X
1

function fool(x,y)
output = 0.0

@inbounds @simd for i in eachindex(x)
if (x[i] > 0.3) && (y[i] < 0.6) && (x[i] > y[il)
output += x[i]
end
end

return output
end

jutia>

2.116 ms (0 allocations: 0 bytes)

rand(1_000_000)
rand(1_000_000)

< X
1]

function foo(x,y)
output = 0.0

@inbounds @simd for i in eachindex(x)
if (x[i] > 0.3) * (y[i] < 0.6) =* (x[i] > y[il)
output += x[i]
end
end

return output
end

jutia>

905.078 us (0 allocations: 0 bytes)




rand(1_000_000)
rand(1_000_000)

< X
1

function foo(x,y)
output = 0.0

@inbounds @simd for i in eachindex(x)
if (x[i]l > 0.3) || (y[i]l < @.6) || (x[i]l > y[iD)
output += x[i]
end
end

return output
end

julia>

2.724 ms (0 allocations: 0 bytes)

rand(1_000_000)
rand(1_000_000)

< X
1n u

function foo(x,y)
output = 0.0

@inbounds @simd for i in eachindex(x)
if Bool(l - !'(x[i] > 0.3) = !(y[i] < 0.6) =* !(x[i] > y[i]))
output += x[i]
end
end

return output
end

julia>

889.879 pus (0 allocations: O bytes)

While with broadcasting:

X = rand(1_000_000)

y = rand(1_000_000)

foo(x,y) = @. ifelse((x>0.3) && (y<0.6) && (x>y), x,y)
julia> | foo($x)

5.356 ms (2 allocations: 7.629 MiB)




X = rand(1_000_000)
= rand(1_000_000)
foo(x,y) = @. ifelse((x>0.3) *» (y<0.6) * (x>y), x,y)

jutia>

541.621 ps (2 allocations: 7.629 MiB)

X = rand(1_000_000)
= rand(1_000_000)
foo(x,y) = @. ifelse((x>0.3) || (y<0.6) || (x>y), x,y)

jutia>

3.354 ms (2 allocations: 7.629 MiB)

X = rand(1_000_000)
y = rand(1_000_000)
foo(x,y) = @. ifelse(Bool(l - !(x>0.3) * !(y<0.6) * !(x>y)), x,vy)

jutias

536.276 pus (2 allocations: 7.629 MiB)

FOOTNOTES

1. Recall that the compiler may automatically disable bounds checking in some cases, especially in straightforward

cases. For instance, this would be the case in our example if only | x| had been indexed and were
employed as the iteration range. This is in contrast to scenarios like the one below, where we're indexing both

and [avtput]

2 Note that requires specifying an operation for when the condition is true and another when it's not. For a
sum reduction, this is handled by returning zero when the condition isn't met.

3-Note that the approach for is somewhat different to the examples we considered above. As we
don't have a vector of conditions already defined, it's optimal to create directly, rather than defining
it as a transformation of the [BitVector | In this way, we avoid unnecessary memory allocations too.
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INTRODUCTION

So far, we've been using the built-in macro to apply SIMD instructions. This macro is relatively
limited in certain respects. For one, it only hints at the potential advantages of applying SIMD, leaving
the final decision implementation to the compiler's discretion. Moreover, it only provides basic
features of SIMD, prioritizing code safety over performance.

Next, we introduce the macro from the package |Loopvectorization| which offers several

distinct advantages. First, it enforces SIMD optimizations when invoked, rather than merely suggesting
them. Furthermore, it applies more aggressive optimizations compared to [@simd]. Finally, [@turbo
supports both for-loops and broadcasting operations, contrasting with [@simd |'s exclusive applicability
to for-loops.

CAVEATS ABOUT IMPROPER USE OF @TURBO

In contrast to [@simd], applying requires some caution, as it may lead to incorrect results if
misapplied. This issue arises because the macro makes additional assumptions about the operations

being performed, with the goal of applying optimizations more aggressively. In particular:
. never checks index bounds, potentially leading to out-of-bounds memory access.

0 assumes the outcome is independent of the iteration order (except for reduction
operations).

An example of the latter is when computing a vector holding cumulative sums of another vector. This
can be observed below, where we verify the final result by summing all values in the output vector.

NO MACRO
X rand(1_000_000)

function foo(x)
output = copy(x)

for i in 2:length(x)
output[i] = output[i-1] + x[i]
end

return output
end

julia> | sum(foo(x))

2.50038el11




@SIMD
x = rand(1_000_000)

function foo(x)
output = copy(x)

@inbounds @simd for i in 2:length(x)
output[i] = output[i-1] + x[i]
end

return output
end

julia> | sum(foo(x))

2.50038e11

@TURBO
x = rand(1_000_000)

function foo(x)
output = copy(x)

@turbo for i in 2:length(x)
output[i] = output[i-1] + x[i]
end

return output
end

julia> | sum(foo(x))

1.03169e6

CASES COVERED

Considering that isn't suitable for all operations, let's present two of its primary applications.
The first one arises when iterations are completely independent, making their execution order
irrelevant.

For instance, the following code snippet applies a polynomial transformation to each element of a
vector.



DEFAULT

rand(1_000_000)
a*x0.1+a"2 * 0.2 -a"3 * 0.3 - a"d x 0.4

X
calculation(a)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
3.098 ms (2 allocations: 7.629 MiB)

@SIMD
X = rand(1_000_000)
calculation(a) = a * 0.1 + a"2 * 0.2 — a3 * 0.3 - a4 = 0.4

function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x) |
5.070 ms (2 allocations: 7.629 MiB)

@TURBO (FOR-LOOP)

X = rand(1_000_000)
calculation(a) = a * 0.1 + a"2 * 0.2 - a"3 * 0.3 - a"d = 0.4

function foo(x)
output = similar(x)

@turbo for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
492.031 ps (2 allocations: 7.629 MiB)




@TURBO (BROADCASTING)

X rand(1_000_000)
calculation(a) = a * 0.1 + a"2 * 0.2 — a3 * 0.3 - a4 = 0.4

foo(x) @turbo calculation.(x)

julia> [@ctime foo($x)]
406.089 ps (2 allocations: 7.629 MiB)

The second application is reductions. Although reductions inherently involve dependent iterations,
they represent a special case that handles properly.

DEFAULT

X
calculation(a)

rand(1_000_00600)
a*0.1+a"2*=0.2-a"3*0.3-a"4 * 0.4

function foo(x)
output = 0.0

for i in eachindex(x)
output += calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
3.083 ms (0 allocations: 0 bytes)

@SIMD

X
calculation(a)

rand(1_000_000)
a*0.1+a"2 *x0.2-a"3 * 0.3 -a"4 x 0.4

function foo(x)
output = 0.0

@inbounds @simd for i in eachindex(x)
output += calculation(x[i])
end

return output
end

julia> [@ctime foo($x) |
3.299 ms (0 allocations: 0 bytes)




@TURBO

X rand(1_000_000)
calculation(a) = a * 0.1 + a"2 * 0.2 — a3 * 0.3 - a4 = 0.4

function foo(x)
output = 0.0

@turbo for i in eachindex(x)
output += calculation(x[i])
end

return output
end

julia> [@ctime foo($x) |
179.722 ps (0 allocations: 0 bytes)

SPECIAL FUNCTIONS

The package |LoopVectorization|leverages the library SLEEF, which is an acronym for "SIMD Library
for Evaluating Elementary Functions". SLEEF is available in Julia through the package |SLEEFPirates

and it's designed to boost the mathematical computations of some functions by utilizing SIMD
instructions. In particular, it speeds up the computations of the exponential, logarithmic, power, and
trigonometric functions.

Below, we illustrate the use of [@turbo]for each type of function. See here for a list of all the functions
supported.

LOGARITHM
DEFAULT
X = rand(1_000_000)
calculation(a) = log(a)
function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = calculation(x[il)
end

return output
end

julia> [@ctime foo($x) |
3.395 ms (2 allocations: 7.629 MiB)




@SIMD

X = rand(1_000_000)
calculation(a) = log(a)
function foo(x)

output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = calculation(x[il)
end

return output
end

julia> [@ctime foo($x)]
3.414 ms (2 allocations: 7.629 MiB)

@TURBO (FOR-LOOP)

X = rand(1_000_000)
calculation(a) = log(a)
function foo(x)

output = similar(x)

@turbo for i in eachindex(x)
output[i] = calculation(x[il)
end

return output
end

julia> [@ctime foo($x) |
1.229 ms (2 allocations: 7.629 MiB)

@TURBO (BROADCASTING)

X
calculation(a)

rand(1_000_000)
log(a)

foo(x) = @turbo calculation.(x)

julia> [@ctime foo($x) |
1.237 ms (2 allocations: 7.629 MiB)

EXPONENTIAL FUNCTION




DEFAULT

X = rand(1_000_000)
calculation(a) = exp(a)
function foo(x)

output = similar(x)

for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
1.962 ms (2 allocations: 7.629 MiB)

@SIMD
X = rand(1_000_000)
calculation(a) = exp(a)
function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x) |
1.950 ms (2 allocations: 7.629 MiB)

@TURBO (FOR-LOOP)

X = rand(1_000_000)
calculation(a) = exp(a)

function foo(x)
output = similar(x)

@turbo for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
600.413 ps (2 allocations: 7.629 MiB)




@TURBO (BROADCASTING)

rand(1_000_000)
exp(a)

X
calculation(a)

foo(x) = @turbo calculation.(x)

julia> [@ctime foo($x)]
596.388 us (2 allocations: 7.629 MiB)

POWER FUNCTIONS
DEFAULT
X = rand(1_000_000)
calculation(a) = a"u
function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = calculation(x[il)
end

return output
end

julia> [@ctime foo($x) |
3.100 ms (2 allocations: 7.629 MiB)

@SIMD

rand(1_000_000)
calculation(a) = a"u

X

function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
3.305 ms (2 allocations: 7.629 MiB)




@TURBO (FOR-LOOP)

X rand(1_000_000)
calculation(a) = a"u

function foo(x)
output = similar(x)

@turbo for i in eachindex(x)
output[i] = calculation(x[il)
end

return output
end

julia> [@ctime foo($x)]
498.762 ps (2 allocations: 7.629 MiB)

@TURBO (BROADCASTING)

rand(1_000_000)
calculation(a) = a"u

X

foo(x) = @turbo calculation.(x)

julia> [@ctime foo($x) |
434.407 ps (2 allocations: 7.629 MiB)

The implementation of power functions includes square roots.

DEFAULT

X rand(1_000_000)
calculation(a) = sqrt(a)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
1.232 ms (2 allocations: 7.629 MiB)




@SIMD

X

rand(1_000_000)

calculation(a) = sqrt(a)
function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = calculation(x[il)
end

return output
end

julia> [@ctime foo($x)]
1.231 ms (2 allocations: 7.629 MiB)

@TURBO (FOR-LOOP)

rand(1_000_000)
calculation(a) = sqrt(a)

X

function foo(x)
output = similar(x)

@turbo for i in eachindex(x)
output[i] = calculation(x[il)
end

return output
end

julia> [@ctime foo($x) |
614.203 ps (2 allocations: 7.629 MiB)

@TURBO (BROADCASTING)

X rand(1_000_000)
calculation(a) = sqrt(a)

foo(x) = @turbo calculation.(x)

julia> [@ctime foo($x) |
614.241 ps (2 allocations: 7.629 MiB)

TRIGONOMETRIC FUNCTIONS

Among others, can handle the functions [sin| [cos | and |tan| Below, we demonstrate its use

with [sin],




DEFAULT

X = rand(1_000_000)
calculation(a) = sin(a)
function foo(x)

output = similar(x)

for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
3.841 ms (2 allocations: 7.629 MiB)

@SIMD
X = rand(1_000_000)
calculation(a) = sin(a)
function foo(x)
output = similar(x)

@inbounds @simd for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x) |
3.767 ms (2 allocations: 7.629 MiB)

@TURBO (FOR-LOOP)

X = rand(1_000_000)
calculation(a) = sin(a)

function foo(x)
output = similar(x)

@turbo for i in eachindex(x)
output[i] = calculation(x[i])
end

return output
end

julia> [@ctime foo($x)]
1.386 ms (2 allocations: 7.629 MiB)




@TURBO (BROADCASTING)

rand(1_000_000)
sin(a)

X
calculation(a)

foo(x) = @turbo calculation.(x)

julia> [@ctime foo($x)]
1.384 ms (2 allocations: 7.629 MiB)
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INTRODUCTION

Programming languages typically execute code sequentially, following a single path of execution that
utilizes one core at a time. This linear approach simplifies reasoning about program behavior, as each
operation completes before the next begins. However, hardware these days is commonly equipped
with multiple processor cores. Consequently, a sequential execution does all the work on one core,
while the others sit idle. This leaves substantial computational power untapped.

Multithreading addresses this limitation by running different segments of our program simultaneously
across multiple cores. While this capability opens up significant opportunities for performance
improvement, it also introduces new challenges that developers need to navigate carefully. In fact,
simple operations that work flawlessly in single-threaded programs may yield incorrect results in a
multithreaded setting. Furthermore, writing multithreaded code requires a fundamental shift in the
user's mindset regarding program execution. All this makes multithreaded code inherently more
difficult to write, test, and debug than its single-threaded counterpart.

Despite these challenges, the potential performance benefits of multithreading make it an essential
tool in modern programming. This is particularly true for applications that are computationally
intensive or demand that the same code be applied to multiple objects.
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11b. Introduction to Multithreading

Martin Alfaro

PhD in Economics

INTRODUCTION

A proper implementation of multithreading demands some basic understanding of the inner workings
of computers. In particular, it's essential to know how programming languages manage dependencies
between operations. This knowledge is especially relevant for multithreading, since the technique
creates the possibility of writing unsafe code, where a flawed multithreaded implementation may yield
incorrect results.

This section will only present preliminary concepts, setting the stage for subsequent sections.
Moreover, the focus will be on explanations, rather than actual implementations of multithreading. In
fact, most of the macros and functions introduced here won't be utilized again on this website.

NATURE OF COMPUTATIONS

An operation can be broadly classified by data dependency as dependent or independent. A
dependent operation is one whose outcome is influenced by the result of another operation. In such
cases, the order of execution is critical, because changing the sequence can alter the final outcome. By
contrast, an independent operation produces the same result, regardless of the order in which it's
executed relative to others—its computation does not rely on the outputs of preceding or subsequent
operations.

The following code gives rise to a dependent or independent operation, depending on which values
are summed by operation B.

job_A() 1+1
job_B(A) = 2 + A

function foo()
A = job_AQ)
B = job_B(A)

return A,B
end
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job_AQ) =1+ 1
job_B() =2 + 2

function foo()
A = job_AQ)
B = job_B(Q)

return A, B

end

Likewise, regardless of dependency status, operations can be computed either sequentially or
concurrently. A sequential procedure involves executing operations one after the other, ensuring
each operation completes before the next one begins. Conversely, concurrency allows multiple
operations to be processed simultaneously, opening up opportunities for parallel execution.

Like most programming languages, Julia defaults to a sequential execution. This is a deliberate
choice that prioritizes result correctness, based on that concurrent execution with dependent
operations can yield incorrect results if mishandled. Basically, the issue arises because
concurrency can deal with dependencies in multiple ways, potentially involving timing inconsistencies
for reading and writing data. A sequential approach precludes this possibility, as it guarantees a
predictable order of execution and therefore timing.

Despite its advantages regarding safety, a sequential approach can be quite inefficient for
independent tasks: by restricting computations to one at a time, computational resources may go
underutilized. In contrast, a simultaneous approach allows for operations to be calculated in
parallel, thereby fully utilizing all our available computational resources. This can lead to
significant reductions in computation time.

Because most programming languages default to sequential execution, certain nuances of concurrent
programming can be difficult to grasp (e.g., concurrency doesn't necessarily imply simultaneity).
Misunderstandings in this regard can lead to flawed program design or incorrect handling of
concurrent processes. To address this potential issue, we next revisit this topic in light of the
fundamental concepts of tasks and threads.

TASKS AND THREADS

When computing an operation, Julia internally defines a set of instructions to be processed through
the concept of task. Each of these tasks must be assigned to a computer thread for its computation.
Since a single task runs on exactly one thread at a time, the number of threads available on your
computer determines the number of tasks that can be computed simultaneously.

Importantly, each session in Julia begins with a predefined pool of threads. Julia defaults to a single
thread, regardless of your computer's hardware. We'll start considering this case, as it provides a
convenient starting point for understanding concurrency.



To build intuition, consider two workers A and B, whom we'll think of as employees working for a
company. B's job consists of performing the same operation continuously for a certain period of time.
In the code, this is represented by summing repeatedly for one second. Instead, A's job consists
of receiving some delivery, which will arrive after a certain period of time. In the code, this job is
represented by performing no computations for two seconds, captured by calling the function

[sleen(2)].

function job_A(time_working)
sleep(time_working) # do nothing (waiting for some delivery in the example)

println("A completed his task")

end

function job_B(time_working)
start_time = time()

while time() - start_time < time_working
1+1 # compute '1+1' repeatedly during ‘time_working' seconds
end

println("B completed his task")
end

Due to the lazy nature of function definitions, these code snippets simply describe a set of operations

without performing any computation. It's only when we add lines like [job_A(2) | and that
the operations are sent for computation.

To lay bare the internal steps Julia follows to compute them, let's use a lower-level approach by

defining and as tasks. As shown below, tasks aren't mere abstractions to

organize our discussion, but are actual constructs in Julia's codebase.

>
1

@task job_A(2) # A's task takes 2 seconds
@task job_B(1) # B's task takes 1 second

jos]
1]

Once tasks are defined, the first step for their computation is to schedule them. This means the task
is added to the queue of operations the computer's processor will execute. Essentially, scheduling
instructs the machine to compute a task as soon as a thread becomes available.

Importantly, multiple tasks can be processed concurrently, without implying that they'll be computea
simultaneously. Indeed, this is the case in a single-thread session. The distinction can be understood
through an analogy with juggling: a juggler manages multiple balls at the same time, but only holds
one ball at any given moment. Similarly, multiple tasks can be processed simultaneously, even when
only one is actively executing on the CPU.

Although true parallelism isn't feasible in single-threaded sessions, concurrency can still offer some
benefits. This is due to the possibility of task switching, which is enabled by a task yielding
mechanism. When a task becomes idle, it can voluntarily relinquish control of the thread, allowing



other tasks to utilize the thread's time. By fostering a cooperative approach, concurrency ensures
plenty of computer resource utilization at any given time.

In the following, we describe this mechanism in more detail.

SEQUENTIAL AND CONCURRENT COMPUTATIONS

While code is executed sequentially by default, tasks are designed to compute concurrently. As a
result, adopting a sequential approach requires instructing Julia to execute tasks one at a time. This is
achieved by introducing a wait instruction immediately after scheduling a task, ensuring that the task
completes its calculation before proceeding.

The code snippet below demonstrates this mechanism by introducing the functions and
i)

A = job_A(2) # A's task takes 2 seconds
B = job_B(1) # B's task takes 1 second
A = @task job_A(2) # A's task takes 2 seconds
B = @task job_B(1) # B's task takes 1 second

schedule(A) |> wait
schedule(B) |> wait




A = @task job_A(2) # A's task takes 2 seconds
B = @task job_B(1) # B's task takes 1 second

(schedule(A), schedule(B)) .|> wait

Note that was added even in the concurrent case. Moreover, call was incorporated after
both tasks had been scheduled. Its purpose is to ensure that both tasks can be processed at the same
time, while preventing that subsequent operations are processed alongside them.

The example reveals the benefits of task switching under concurrency: although only one task can run
at any moment, task A can yield control of the thread to task B when it becomes idle. In the code, the
idle state is simulated by the function , during which the computer performs no operations.
Once task A becomes idle, its state is saved, allowing it to eventually resume execution from where it

left off. In the meantime, task B can use that thread's processing time, explaining why B finishes first.

By taking turns efficiently and sharing the single available thread, tasks make the most of the CPU’s
processing power. This contrasts with a sequential approach, where task A must finish before moving
to the next task. The difference is reflected in their execution times, resulting in 2 seconds for the
concurrent approach and 3 seconds for the sequential one.

Examples of idle states emerge naturally in real-world scenarios. For instance, it's common when a
program is waiting for user input, such as a keystroke or mouse click. It can also arise when browsing
the internet, where the CPU may idle while waiting for a server to send data. Task switching is so
ubiquitous in certain contexts that we often take it for granted. For instance, | bet you never
questioned whether you could use the computer while a document prints in the background!

Note, though, that concurrency with a single thread offers no benefits if both tasks require active
computations. This is because the CPU would be fully utilized, leaving no opportunity for task
switching. In such cases, the sequential and concurrent approaches are equivalent. In our example,
this would occur if task B consisted of computing repeatedly, resulting in an execution time of 3
seconds for both approaches.



function job(name_worker, time_working)
start_time = time()

while time() - start_time < time_working

1+1 # compute '1+1' repeatedly during ‘time_working' seconds
end

println("$name_worker completed his task")
end

function schedule_of_tasks()
A = @task job("A", 2) # A's task takes 2 seconds
B = @task job("B", 1) # B's task takes 1 second

schedule(A) [> wait
schedule(B) |> wait
end

function schedule_of_tasks()

A = @task job("A", 2) # A's task takes 2 seconds
B = @task job("B", 1) # B's task takes 1 second

(schedule(A), schedule(B)) .|> wait
end

Nonetheless, the key insight from the examples isn't that concurrency is ineffective in a single-thread
session. Rather, the main takeaway is the underlying procedure: when a task is scheduled, the
computer attempts to find an available thread for its computation. For concurrency, this implies




that starting a session with multiple threads enables parallel code execution, which is simply
called multithreading. In the following, we explain this case in more detail.

MULTITHREADING

Let's continue considering the last scenario, where both workers A and B perform meaningful
computations. The only change we introduce is that Julia's session now starts with more than one
thread available. For the concurrent approach, the only code adjustment added is that tasks are no
longer "sticky". This is just a technicality indicating that a task can be run on any thread, rather than
the thread on which it was first scheduled. Non-sticky tasks allow for a better use of resources, as the

task can be computed as soon as a thread becomes available.

function schedule_of_tasks()
A = @task job("A", 2) # A's task takes 2 seconds
B = @task job("B", 1) # B's task takes 1 second

schedule(A) |> wait
schedule(B) |> wait
end

function schedule_of_tasks()
A = @task job("A", 2) ; A.sticky = false # A's task takes 2 seconds
B = @task job("B", 1) ; B.sticky = false # B's task takes 1 second

(schedule(A), schedule(B)) .|> wait
end




Once there's more than one thread available, concurrency implies simultaneity. This means each task
runs on a different thread, which is why task B finishes first.

Previewing some of the approaches employed in the next section, let's compare Julia's standard
implementation with a multithreaded one. The macro [@spawn], which will be covered in the next
section, offers a simple way to run tasks in a multithreaded environment. It's essentially equivalent to
creating and scheduling a non-sticky task. The following code snippets demonstrate both the standard
and multithreaded approaches.

function schedule_of_tasks()
A = job("A", 2) # A's task takes 2 seconds
B = job("B", 1) # B's task takes 1 second

end

function schedule_of_tasks()
A = @spawn job("A", 2) # A's task takes 2 seconds
B = @spawn job("B", 1) # B's task takes 1 second

(A,B) .|> wait
end

THE IMPORTANCE OF WAITING FOR THE RESULTS

Before concluding this section, it's worth stressing a crucial point: you must always instruct the
computer to wait for all operations to complete, before it proceeds with any subsequent computation.
This holds true even for concurrent computations. Failing to wait may produce incorrect results,



even in a single-threaded environment.

To illustrate this, consider mutating a vector in a single-threaded session, with a one-second delay for
each value update. If we don't wait for the mutation to finish, any subsequent operation will be based
on the vector’s value at the moment it's accessed. This value doesn't necessarily reflect its final state
after the mutation, but merely its value at the moment of reference.

For instance, suppose we want to mutate the vector [x = [0,0,0]]into[x = [1,2,3]] Julia’s default

sequential execution ensures that the mutation must complete, before continuing with any other
operation.

# Description of job
function job!(x)
for i in 1:3
sleep(1) # do nothing for 1 second
x[i] =1 # mutate x[1i]

println("'x" at this moment is $x")
end
end

# Execution of job
function foo()
x = [0, 0, 0]

job!(x) # slowly mutate 'x'

return sum(x)
end

output = foo()
println("the value stored in ‘output’ is $Coutput)™)

Let's now consider the same implementation but through tasks. In particular, a task performing a

mutation is defined in the following way.



function job!(x)
@task begin
for i in 1:3
sleep(1) # do nothing for 1 second
x[i] =1 # mutate x[1i]

println("'x' at this moment is $x")
end
end

end

The following code snippets show the consequences of waiting and not waiting for the mutation to

complete.

function foo()
x = [0, 0, 0]

job!(x) |> schedule # define job, start execution, don't wait for job to be
done

return sum(x)
end

output = foo()
println("the value stored in ‘output’ is $Coutput)™)




function foo()
x = [0, 0, 0]

job!(x) |> schedule [|> wait # define job, start execution, only continue when
finished

return sum(x)
end

output = foo()
println("the value stored in ‘output’ is $Coutput)™)

As we can see, without waiting for the mutation to take place, the subsequent operation takes the

value of [x] at the moment of execution. Since the mutation hasn't started, [x]is still[x = [0,0,0]].
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INTRODUCTION

The previous section explained the basics of multithreading. In particular, we've shown that
operations can be computed either sequentially (Julia's default) or concurrently. The latter approach
enables multiple operations to be processed simultaneously, with operations running as soon as a
thread becomes available. When Julia's session is initialized with more than one thread, this implies
that computations can be executed in parallel.

This section will focus on Julia's native multithreading mechanisms, a topic that will span several
sections. Our primary goal here is to demonstrate how to write multithreaded code, rather than
exploring how and when to apply the technique.

We've deliberately structured our explanation in this way to smooth subsequent discussions.
However, a crucial caveat at this point remains necessary: while multithreading can offer significant
performance advantages, it's not applicable in all scenarios. In particular, multithreading demands
extreme caution in handling dependencies between operations, as mismanagement can lead to silent
catastrophic bugs. We'll defer the topic of unsafe-thread operations for now, as identifying them
presupposes a basic understanding of parallelism techniques.

ENABLING MULTITHREADING

Julia initializes every session with a given pool of threads available. Each of these threads is
responsible for executing a given set of instructions. Consequently, the number of threads delimits the
number of instructions that the CPU can handle simultaneously.

By default, Julia only operates with a single thread, requiring setting an alternative number of threads
to enable multithreading. You can achieve this in VSCode or VSCodium by going to File > Preferences >
Settings. Then, you should search for the keyword threads, prompting the following line:

Julia: Num Threads

After pressing Edit in settings.json, you should add the line |"julia.NumThreads": "auto"| This will

automatically identify the number of threads based on your computer's features (either logical or
physical threads available). Notice that the effects won't take place on the current session.
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To check whether the effects have taken place, use the command | Threads.nthreads() |. This displays

the number of threads available in the session. Any number greater than one will indicate that
multithreading is activated. Notice also that the changes are permanent, so that every new Julia
session will start with the number of threads specified.

Once we have a session with more than one thread, there are several packages for performing

multithreaded computations. The focus on this section will be on the built-in package [Threads ], which
is automatically imported when you start Julia.

# package Threads automatically imported when you start Julia
Threads.nthreads()
2
using Base.Threads # or ‘'using .Threads'
nthreads()
2

Warning! - Loaded Package

All the scripts below assume that you've executed the line |using
Base.Threads | Furthermore, all the examples are based on a session
with two worker threads.

TASK-BASED PARALLELISM: @SPAWN

The first approach we'll cover is implemented through the macro [@spawn], which streamlines the
application of the previous section's techniques. Specifically, by prepending any operation with
[@spawn], we create a (non-sticky) task that's scheduled right away for its execution. Recall that once a
task is scheduled, it'll immediately start its computation if there's a thread available.

Unlike other approaches that we'll present, requires explicitly instructing Julia to wait for the
task to complete. The way to do this depends on the nature of the output. For tasks that perform
computation and additionally return an output, we have the function [fetch] This waits for
calculations of a task to finish and then returns its output. Since parallel computation requires
spawning multiple tasks, the function argument of should comprise all the tasks spawned and

be broadcasted.

In the following, we illustrate with two spawned tasks that return vectors as their output.



x = rand(10); y = rand(10)

function foo(x)

a=x .% -2
b=x . 2
a,b

end

x = rand(10); y = rand(10)

function foo(x)
task_a = @spawn x .* -2
task_b = @spawn x .* 2

a,b = fetch.((task_a, task_b))
end

It's important to distinguish between and [a]: while [a] refers to the vector created (i.e., the
task's output), denotes the task creating the vector [a]. The distinction is essential since the

function only takes a task as its input.

Alternatively, for operations that don't return any output, we can use either the function or the

macro [@sync| The function is applied similarly to [fetch]. Instead, the macro requires
wrapping all operations to be synchronized, which is done by enclosing the operations with the
keywords [begin|and[end].

For the demonstration, let's consider a mutating function. Mutating functions are suitable as an
example, since they only modify values of a collection, without returning any output.

x = rand(10); y = rand(10)

function foo!(x,y)
@. x = -x
@. y=-y
end

x = rand(10); y = rand(10)

function foo!(x,y)
task_a = @spawn (@. x = -x)
task_b = @spawn (@. y = -y)

wait.((task_a, task_b))
end




x = rand(10); y = rand(10)

function foo!(x,y)
@sync begin
@spawn (@. x
@spawn (@. y
end

-x)
-y)

end

MULTITHREADING OVERHEAD

To see the advantages of [@spawn] in action, let's compute the sum and maximum of a vector [x], for
which we present a sequential and a simultaneous approach. To clearly shed light on the benefits of
parallelization, we also include the time to execute each operation in isolation. The results establish
that the time of the sequential procedure is equivalent to the sum of each computation. Instead,
thanks to parallelism, the execution time under multithreading is roughly equivalent to the maximum
time required for either computation.

X = rand(10_000_000)

function non_threaded(x)

a = maximum(x)
b = sum(x)
all_outputs = (a,b)

end

julia> [@btime maximum($x) |
7.705 ms (0 allocations: 0 bytes)

julia> [@btime sum($x) |
3.131 ms (0 allocations: 0 bytes)

julia> [@btime non_threaded($x) |
10.917 ms (O allocations: 0 bytes)




X = rand(10_000_000)

function multithreaded(x)

task_a = @spawn maximum(x)
task_b = @spawn sum(x)
all_tasks = (task_a, task_b)

all_outputs = fetch.(all_tasks)
end

julia> [@btime maximum($x) |
7.705 ms (0 allocations: 0 bytes)

julia> [@btime sum($x) |
3.131 ms (0 allocations: 0 bytes)
julia> [@btime multithreaded($x) |
7.741 ms (21 allocations: 1.250 KiB)

As we can see, the execution time under multithreaded is roughly equivalent to the maximum time for
a single operation to complete in isolation. Nonetheless, this equivalence isn't exact. The reason is that
multithreading has a non-negligible overhead, stemming from the creation and scheduling of
tasks. This determines multithreading isn't beneficial for operations involving small objects, as
the added overhead negates any potential benefits.

To illustrate this, let's compare the execution times of a sequential and multithreaded approach for
different sizes of. In the case considered, the single-threaded approach dominates for sizes smaller
than 100,000.

x_small = rand( 1_000)
x_medium = rand( 100_000)
x_big rand(1_000_000)

function foo(x)
a = maximum(x)
b sum(x)

all_outputs = (a,b)

end

julia> [@btime foo($x_small)|
866.758 ns (0 allocations: 0 bytes)

julia> [@btime foo($x_medium) |
59.934 pus (0@ allocations: 0 bytes)

julia> [@btime foo($x_big) |
620.869 ps (0 allocations: 0 bytes)




x_small = rand( 1_000)
x_medium = rand( 100_000)
x_big rand(1_000_000)

function foo(x)

task_a = @spawn maximum(x)
task_b = @spawn sum(x)
all_tasks = (task_a, task_b)

fetch. (all_tasks)

all_outputs
end

julia> [@btime foo($x_small)]|
3.245 ps (14.33 allocations: 1.068 KiB)

julia> [@btime foo($x_medium) |
55.853 us (21 allocations: 1.250 KiB)

julia> [@btime foo($x_big) |
549.445 ps (21 allocations: 1.250 KiB)
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INTRODUCTION

Multithreading allows running multiple threads simultaneously in a single process, enabling
operations to be executed in parallel within the same computer. Unlike other forms of parallelization
such as multiprocessing, multithreading is distinguished by the sharing of a common memory
space among all tasks.

This shared memory environment introduces several complexities, determining that running code in
parallel may create side effects if handled improperly. Basically, the issue arises when multiple
threads access and modify shared data, potentially causing unintended consequences in other
threads. These potential issues have led to the concept of thread-safe operations. They're
characterized by the possibility of being executed in parallel without causing any issues (e.g., data
corruption, inconsistencies, or crashes).

The section starts by identifying features that make operations unsafe. They'll reveal that common
operations such as reductions aren't thread safe, giving rise to incorrect results if multithreading is
applied naively. We'll also explore the concept of embarrassingly parallel problems, which are a prime
example of thread-safe operations. As the name suggests, these problems can be parallelized directly,
without requiring significant program adaptations.

UNSAFE OPERATIONS

We start by presenting some operations that aren't thread-safe. The examples highlight the need for
caution when tasks exhibit some degree of dependency, either in terms of operations or shared

resources.

WRITING ON A SHARED VARIABLE

The following example highlights the potential pitfalls of writing to a shared variable in a concurrent
environment. The scenario considered is such that a scalar variable is initialized to zero. Then,
this value is updated within a for-loop that iterates twice, with set to [i]in the i-th iteration.
The script is as follows.
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function foo()
output = 0

for i in 1:2
sleep(1/1i)
output = i

end

return output

end
julia>
2

function foo()
output = 0

@threads for i in 1:2
sleep(1/1i)
output = i

end

return output

end
julia>
1

To illustrate the challenges of concurrent execution, we've deliberately introduced a decreasing delay

before updating [output | This delay is implemented using [sleep(1/i)] causing the first iteration to

pause for 1 second and the second iteration to pause for half a second. Although this delay is
artificially introduced through [sleep] it represents the potential delays caused by intermediate
computations, which could prevent an immediate update of [output .

The delay is inconsequential for a sequential procedure, with taking on the values 0, 1, and 2
as the program progresses. However, when executed concurrently, the first iteration completes only
after the second iteration has finished. As a result, the sequence of values for is0,2,and 1.

While the problem may seem apparent, it can manifest in more complex and subtle ways. In fact, the
issue can be exacerbated when each iteration additionally involves reading a shared variable. Next, we
consider a scenario like this.

READING AND WRITING A SHARED VARIABLE

Reading and writing shared data doesn't necessarily cause problems. For instance, we'll demonstrate

that a parallel for-loop can safely mutate a vector, even though multiple threads are simultaneously
modifying a shared object (the vector). However, in scenarios where reading and writing shared
data is sensitive to the specific order of thread execution, it can give rise to a data race (also
known as race condition). The name reflects that the final output will change in each execution,
depending on which thread finishes and modifies the data last.



To illustrate the issue, let's keep using an example similar to the outlined above. We modify the
example by introducing the variable [ temp], whose value is updated in each iteration. Moreover, this is
a variable shared across threads, and is used to mutate the i-th entry of a vector [output]. By
introducing a delay before writing each entry of [output], the example shows that all threads end up
using the last value of [ temp] which is 2.

function foo()

out = zeros(Int, 2)
temp = 0
for i in 1:2
temp = i; sleep(di)
out[i] = temp
end
return out
end
julia>
2-element Vector{Int64}:
1
2
function foo()
out = zeros(Int, 2)

temp = 0

@threads for i in 1:2
temp = i; sleep(i)
out[i] = temp

end

return out
end

julia>

2-element Vector{Int64}:
1

1




function foo()
out = zeros(Int, 2)

@threads for i in 1:2
temp
out[i]

end

i; sleep(i)
temp

return out
end

julia>

2-element Vector{Int64}:
1

2

As the last tab shows, the issue can be easily circumvented in this case. The solution simply requires
defining as a local variable, which is achieved by avoiding its initialization out of the for-loop. By
doing so, each thread will refer to its own local copy of [temp].

Beyond this specific solution, the example aims to highlight the subtleties of parallelizing operations.
To further illustrate it, we next examine a more common scenario where data races occur: reductions.

RACE CONDITIONS WITH REDUCTIONS

To illustrate the issue with reductions, let's consider the sum operation. The gist of the problem lies in
that the variable accumulating the sum is accessed and modified by all threads in each iteration.

x = rand(1_000_000)

function foo(x)
output = 0.

for i in eachindex(x)
output += x[i]
end

return output
end

julia>

500658.01158503356




X = rand(1_000_000)

function foo(x)
output = 0.

@threads for i in eachindex(x)
output += x[i]
end

return output
end

jutie>

21534.22602627773

x = rand(1_000_000)

function foo(x)
output = 0.

@threads for i in eachindex(x)
output += x[i]
end

return output
end

jutia>

21342.557817155746

x = rand(1_000_000)

function foo(x)
output = 0.

@threads for i in eachindex(x)
output += x[i]
end

return output
end

jutie>

21664.133622716112

The key insight from this example isn't that reductions are incompatible with multithreading. Rather,
that the strategy to apply multithreading needs to be adapted accordingly.

In the following, we'll consider the simplest case to apply multithreading, which is referred to as
embarrassingly parallel. Its distinctive feature is that multithreading can be applied without any

transformation of the data. After that, we'll show scenarios that can handle dependent operations like
reductions.



EMBARRASSINGLY PARALLEL PROBLEMS

The simplest scenario in which multithreading can be applied is known as an embarrassingly parallel
problem. The term highlights the ease with which code can be divided for parallel execution. It
comprises programs consisting of multiple independent and identical subtasks, not requiring
interaction with one another to produce the final output. This independence allows for seamless
parallelization, providing complete flexibility in the order of task execution.

In for-loops, one straightforward way to parallelize these problems is given by the macro [@threads].
This is a form of thread-based parallelism, where the distribution of work is based on the number of
threads available. Specifically, attempts to evenly distribute the iterations, in an effort to
balance the workload. The approach contrasts with [@spawn], which is a task-based parallelism where
iterations are divided according how the user has manually defined tasks. Unlike [@spawn], which
requires a manual synchronization of the tasks, |@threads [automatically schedules the tasks and waits

for their completion before proceeding with any further operations. This is demonstrated below.

x_small = rand( 1_000)
x_medium = rand( 100_000)
x_big = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = log(x[il)
end

return output
end

julia> [@btime foo($x_small)]
3.043 ps (1 allocations: 7.938 KiB)

julia> [@btime foo($x_medium)]
315.751 ps (2 allocations: 781.297 KiB)

julia> [@btime foo($x_big) ]
3.326 ms (2 allocations: 7.629 MiB)




x_small = rand( 1_000)
x_medium = rand( 100_000)
x_big rand(1_000_000)

function foo(x)
output = similar(x)

@threads for i in eachindex(x)
output[i] = log(x[i])
end

return output
end

julia> |[@btime foo($x_small) |
10.139 pus (122 allocations: 20.547 KiB)

julia> [@btime foo($x_medium) |
42.044 ps (123 allocations: 793.906 KiB)

julia> [@btime foo($x_big) ]|
340.589 ps (123 allocations: 7.642 MiB)

In the next section, we provide a thorough analysis of the differences between and

[@spawn].
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INTRODUCTION

Parallelism techniques are aimed at code that performs multiple operations. This makes it a natural fit
for for-loops. By using the macro introduced in the previous section, we can parallelize for-
loops through task-based parallelism. In an upcoming section, we'll demonstrate that is
flexible enough to split iterations into tasks in various ways. For now, we'll consider a simple
(inefficient) case where each iteration defines a separate task. The coding implementing this technique

is shown below.

@sync begin
for i in 1:4
@spawn println("Iteration $i is computed on Thread $(threadid())")
end
end

Iteration
Iteration
Iteration
Iteration

is computed on Thread
is computed on Thread
is computed on Thread
is computed on Thread

W s~ N B
NN DN R

@sync begin
@spawn println("Iteration
@spawn println("Iteration
@spawn println("Iteration
@spawn println("Iteration

is computed on Thread $(threadid())")
is computed on Thread $(threadid())")
is computed on Thread $(threadid())")
is computed on Thread $(threadid())")

E W N PR

end

Iteration
Iteration
Iteration
Iteration

is computed on Thread 1
is computed on Thread 2
is computed on Thread 1
is computed on Thread 2

A W N R

When there are only a few iterations involved in a for-loop, creating one task per iteration can be a
straightforward and effective way to parallelize the code. However, as the number of iterations
increases, the approach becomes less efficient due to the overhead of task creation. To mitigate this

issue, we need to consider alternative ways of parallelizing for-loops.

One such alternative is to create tasks that encompass multiple iterations, rather than just one
iteration per task. The techniques to do this, which will be explored in following sections, offers more
granular control, but at the expense of adding substantial complexity to the code.
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In light of this, Julia provides the macro from the package [Threads] with the goal of

reducing the overhead of task creation while keeping the parallelization simple. This is achieved by
dividing the set of iterations evenly among threads, thereby restricting the creation of tasks to the
number of threads available.

The following example demonstrates the implementation of [@threads], highlighting its difference
from the approach using [@spawn]. The scenario considered is based on 4 iterations and 2 worker
threads, where we also display the thread on which each iteration is executed. This is achieved by the
function, which identifies the ID of the thread computing the operation.

for i in 1:4
println("Iteration $i is computed on Thread $(threadid())")

end

Iteration 1 is computed on Thread 1
Iteration 2 is computed on Thread 1
Iteration 3 is computed on Thread 1
Iteration 4 is computed on Thread 1

@threads for i in 1:4
println("Iteration $i is computed on Thread $(threadid())™")

end

Iteration 1 is computed on Thread 1
Iteration 2 is computed on Thread 1
Iteration 3 is computed on Thread 2
Iteration 4 is computed on Thread 2

@sync begin
for i in 1:4
@spawn println("Iteration $i is computed on Thread $(threadid())")

end
end
Iteration 2 is computed on Thread 2
Iteration 1 is computed on Thread 1
Iteration 4 is computed on Thread 2
Iteration 3 is computed on Thread 2

The key distinction between |@threads | and |@spawn | lies in their thread allocation strategies. Thread
assignments with are predetermined: before the for-loop begins, the macro pre-allocates
threads and distributes iterations evenly. Thus, each thread is assigned a fixed number of iterations

upfront, creating a predictable workload distribution. In the example, the feature is reflected in the
allocation of two iterations per thread. In contrast, creates a separate task for each iteration,
dynamically scheduling them as soon as a thread becomes available. This method allows for more
flexible thread utilization, with task assignments adapting in real-time to the current system load and
available thread capacity. For instance, in the given example, one thread ended computing three out
of the four iterations.



@SPAWN VS @THREADS

The macros and embody two distinct approaches to work distribution, thus

catering to different types of scenarios. By comparing the creation of one task per iteration relative to
[@threads], we can highlight the inherent trade-offs involved in parallelizing code.

employs a coarse-grained approach, making it well-suited for workloads with similar
computational requirements. By reducing the overhead associated with task creation, this approach
excels in scenarios where tasks have comparable execution times. However, it's less effective in
handling workloads with unbalanced execution times, where some iterations are computationally
intensive while others are relatively lightweight.

In contrast, adopts a fine-grained approach, treating each iteration as a separate task that can
be scheduled independently. This allows for more flexible work distribution, with tasks dynamically
allocated to available threads as soon as they become available. As a result, is particularly
well-suited for scenarios with varying computational efforts, where iteration completion times can
differ significantly. While this approach has a bigger overhead due to the creation of numerous
smaller tasks, it simultaneously enables more efficient resource utilization. This is because no thread
remains idle while tasks await computation.

In the following, we demonstrate the efficiency of the approaches under each scenario. With this goal,

consider a situation where the i-th iteration computes [job(i;time_working)| This function

represents some calculations that are performed during | time_working| seconds. It's formally defined

as follows.

function job(i; time_working)
println("Iteration $i is on Thread $(threadid())")

start_time time()

while time() - start_time < time_working
1+1 # compute '1+1' repeatedly during ‘time_working' seconds
end
end

Note that[job]additionally identifies the thread on which it's running and displays it on the REPL.

Based on a for-loop with four iterations and a session with two worker threads, we next consider two
scenarios. They differ by the computational workload of the iterations.

SCENARIO 1: UNBALANCED WORKLOAD

The first scenario represents a situation with unbalanced work, where some iterations require more

computational effort. The feature is captured by assuming that the i-th iteration has a duration of [i
seconds. A visual representation of the problem is as follows.

XXXXX



We start by presenting the coding implementing each approach, and then provide explanations for
each.

function foo(nr_iterations)
for i in l:nr_iterations
job(i; time_working = i)
end
end

is on Thread 1
is on Thread 1
Iteration is on Thread 1
Iteration is on Thread 1
10.000 s (40 allocations: 1.562 KiB)

Iteration
Iteration

W N

function foo(nr_iterations)
@threads for i in 1l:nr_iterations
job(i; time_working = i)

end
end
Iteration 1 is on Thread 1
Iteration 3 is on Thread 2
Iteration 2 is on Thread 1
Iteration 4 is on Thread 2
7.000 s (51 allocations: 2.625 KiB)

function foo(nr_iterations)
@sync begin
for i in l:nr_iterations
@spawn job(i; time_working = i)

end
end
end
Iteration 1 is on Thread 1
Iteration 2 is on Thread 2
Iteration 3 is on Thread 1
Iteration 4 is on Thread 2
6.000 s (69 allocations: 3.922 KiB)

Given the execution times for each iteration, a sequential approach would take 10 seconds. As for
parallel implementations, ensures that there are as many tasks created as number of
threads. In the example, this means that there two tasks are created, with the first task computing
iterations 1 and 2, and the second task computing iterations 3 and 4. As a result, the overall execution
time is reduced to 7 seconds.

In contrast, creates a separate task for each iteration, which increases the overhead of task
creation. Although the overhead is negligible in this example, it can be appreciated in the increased
memory allocation. Despite this disadvantage, the approach allows each iteration to be executed as
soon as a thread becomes available. Given the varying execution times between iterations, this
dynamic allocation becomes advantageous, enabling iterations 3 and 4 to run in parallel.



The example demonstrates this, where iterations 1 and 2 are now executed on different threads. Since
the first iteration only requires one second, the thread becomes available to compute the third
iteration immediately. The final distribution of tasks on threads is such that iterations 1 and 3 are
executed on one thread, while iterations 2 and 4 are executed on the other thread. This results in a
total execution time of 6 seconds.

SCENARIO 2: BALANCED WORKLOAD

Consider now a scenario where the execution of requires exactly the same time regardless of the

iteration considered. To make the overhead more apparent, we'll use a larger number of iterations. In
this context, ensures parallelization with a reduced overhead, explaining why it's faster

than the approach relying on[@spawn]|.

function foo(nr_iterations)
fixed_time = 1 / 1_000_000

for i in l:nr_iterations
job(i; time_working = fixed_time)
end
end

julia> [@btime foo(1_000_000) |
1.717 s (without a warmup) (0@ allocations: 0 bytes)

function foo(nr_iterations)
fixed_time = 1 / 1_000_000

@threads for i in 1l:nr_iterations
job(i; time_working = fixed_time)
end
end

julia> [@btime foo(1_000_000)
858.399 ms (11 allocations: 1.094 KiB, without a warmup)

function foo(nr_iterations)
fixed_time = 1 / 1_000_000

@sync begin
for i in l:nr_iterations
@spawn job(i; time_working = fixed_time)
end
end
end

julia> [@btime foo(1_000_000)
1.270 s (5000021 allocations: 498.063 MiB, 19.16% gc time, without a warmup)
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INTRODUCTION

So far, we've explored two approaches for parallelizing code, tailored to different scenarios. The first
one was [@spawn|. By allowing us to define the specific tasks to be processed, this provides granular
control over the parallelization process. For its part, represents a simplified approach to
parallelizing for-loops, where the tasks spawned are automatically handled. In particular, they're
defined based on the number of available threads.

Additionally, we've pointed out that, due to inherent dependencies between computations, not all
tasks lend themselves equally to parallelization. Specifically, when tasks aren't embarrassingly parallel,
a naive approach can lead to severe issues like race conditions.

All this implies that, to this point, our discussion has been exclusively focused on the syntax and work
distribution of these approaches. Therefore, we have yet to address how to apply multithreading in
real scenarios, including strategies to deal with dependencies.

This section and the next one aim to bridge this gap, providing practical guidance on implementing
multithreading. With this goal, we begin by showing the advantages of parallelizing at a coarse level
compared to parallelization at individual operations. After this, we introduce a more general method
based on to parallelize for-loops. This enables us to have control over the partition of
iterations that define tasks. Its main advantage is the provision of a flexible distribution of iterations
among tasks, thus giving us further control over task creation. The technique also makes it possible to
apply multithreading under a ubiquitous type of dependency: reductions.

BETTER TO PARALLELIZE AT THE TOP

Given the overhead involved in multithreading, there's an inherent trade off between creating new
tasks and utilizing all our machine resources. Consequently, we must first carefully consider whether
parallelizing our code is worthy. For instance, multithreading is only justified with collections if their
sizes are substantial enough to make up for overhead involved. Otherwise, single-threaded
approaches will consistently outperform parallelized ones.

In case multithreading is worthwhile, we immediately face another decision: at what level to parallelize
code. In the following, we'll demonstrate that parallelism at the highest level possible is preferable
to multithreading individual operations. The reason is that the former minimizes the overhead
involved in creating tasks, thus resulting in faster execution times.



Note that the level of parallelization is limited by the degree of dependence between operations,
explaining why we qualify the highest level as the one that's possible. For instance, in problems
requiring serial computation, the best we can achieve is a parallelization at each individual step.

To illustrate all this, let's consider a for-loop where each iteration needs to sequentially compute three
operations.

JULIA'S DEFAULT

stepl(a) = a " 2
step2(a) = sqrt(a)
step3(a) = log(a + 1)

function all_steps(a)

y = stepl(a)
z = step2(y)
output = step3(z)

return output
end

function foo(x)
output = similar(x)

for i in eachindex(output)
output[i] = all_steps(x[il)
end

return output
end

x_small = rand( 1_000)
x_large rand(100_000)

julia> [@btime foo($x_small) |
4.923 ps (1 allocations: 7.938 KiB)

julia> [@btime foo($x_large)|
507.797 us (2 allocations: 781.297 KiB)




PARALLELIZATION AT THE HIGHEST LEVEL POSSIBLE

stepl(a) = a ~ 2
step2(a) = sqrt(a)
step3(a) = log(a + 1)

function all_steps(a)

y = stepl(a)
z = step2(y)
output = step3(z)

return output
end

function foo(x)
output = similar(x)

@threads for i in eachindex(output)
output[i] = all_steps(x[il)

end

return output

end
x_small = rand( 1_000)
x_large = rand(100_000)

julia> [@btime foo($x_small)|
9.963 ps (122 allocations: 20.547 KiB)

julia> [@btime foo($x_large) |
59.551 ps (123 allocations: 793.906 KiB)




EACH OPERATION PARALLELIZED

stepl(a) = a " 2
step2(a) = sqrt(a)
step3(a) = log(a + 1)

function parallel_step(f, x)
output = similar(x)

@threads for i in eachindex(output)
output[i] = f(x[i])

end

return output
end

function foo(x)

y = parallel_step(stepl, x)
z = parallel_step(step2, y)
output = parallel_step(step3, z)

return output
end

x_small = rand( 1_000)
x_large = rand(100_000)

julia> [@btime foo($x_small)]
35.938 ps (366 allocations: 61.641 KiB)

julia> [@btime foo($x_big)]
87.746 us (369 allocations: 2.326 MiB)

The example clearly illustrates that parallelization is only advantageous when dealing with big
collections. This is evidenced by the execution times, where multithreading is only faster when
is considered. Secondly, an approach where tasks comprise all operations is faster than
multithreading each in isolation. This is in part reflected in the reduced memory allocations when all
operations are encompassed.

IMPLICATIONS

The strategy of parallelizing code at the top level has significant implications for writing programs. This

is especially the case when the code will eventually be applied to multiple objects. It suggests that we
should start by writing code for a single object, without considering parallelization. Once the single-
case code is thoroughly optimized, parallel execution can be seamlessly integrated at the highest level.
The approach not only improves performance, but also simplifies the coding process by streamlining
the debugging and testing of code.

A typical example where this strategy arises naturally is scientific simulations, where numerous
independent runs of the same model are executed. In this case, the best strategy is to focus on a
single-thread codebase for the model, subsequently processing the different runs of the model in
parallel.



THE IMPORTANCE OF WORK DISTRIBUTION

Multithreading performance is influenced by the balance of computational workload across iterations.
The macro is highly effective when each iteration requires a roughly equal processing time.
This is because the tasks spawned will comprise an equal amount of iterations. However, scenarios
with varying computational effort can pose significant challenges. In those cases, some threads may
remain idle, while others will be heavily loaded. This may dramatically reduce the potential
performance gains of parallel processing.

To address this issue, we need to have more control over how to distribute work among threads. With
the tools introduced so far, we could employ to make each iteration represent a different
task. However, this approach becomes extremely inefficient if there is a substantial number of
iterations. The reason is that defining many more tasks than the number of threads available results
in an unnecessary substantial overhead. The following example reveals this feature, where the
execution time of spawning one task per iteration is extremely slow.

@THREADS
x = rand(10_000_000)

function foo(x)
output = similar(x)

@threads for i in eachindex(x)
output[i] = log(x[il)
end

return output
end

julia> [@btime foo($x)]
4.942 ms (123 allocations: 76.306 MiB)

@SPAWN
x = rand(10_00600_000)

function foo(x)
output = similar(x)

@sync for i in eachindex(x)
@spawn output[i] = log(x[il)
end

return output
end

julia> [@btime foo($x)]
9.983 s (60001697 allocations: 5.136 GiB)




To have more control over the work distribution, we need to partition objects into smaller subsets that
can be processed concurrently. Before explaining the implementation of the technique, we begin

showing how to partition a collection and its indices. The procedure relies on the |ChunksSplitters

package.

PARTITIONING COLLECTIONS

The easiest way to partition a collection | x| and its indices | x| is through the package |Chunksplitters|
The package provides two functions for lazily partitioning called and [index_chunks]. The
functions accept[n]and as keyword arguments, depending on the partition to be implemented.

Specifically, | n | specifies the number of subsets in which the collection should be divided, where each
subset's size attempts to distribute elements evenly. In contrast, provides the number of
elements that each subset should contain. Since can't guarantee an even distribution across all

subsets, it'll adjust the number of elements in one of the subsets.

The following example considers a variable | x | that comprises the 26 letters of the alphabet. Note that
the presentation of the outputs uses [collect ] since [chunks]and[index chunks]are lazy.

PARTITION BY NUMBER OF CHUNKS

X = string.('a':'z"') # all letters from "a" to "z"

1]
[

nr_chunks

chunk_indices = index_chunks(x, n = nr_chunks)
chunks(x, n = nr_chunks)

chunk_values

julia> [collect(chunk_indices) ]|
5-element Vector{UnitRange{Int64}}:
1:6

7:11

12:16

17:21

22:26

julia> [collect(chunk_values)]|

5-element Vector{SubArray{String, 1, Vector{String}, Tuple{UnitRange{Int64}}, true}}:
[lla", Ilbll, ”C", Ildll, lIeII, II-[:H:]

["g", "h™", "i", 3", k"]
(", "m", "n", "o", "p"]
["q", "r", "s", "t", "u"]
["v", "w", "x", "y", "z"]




PARTITION BY SIZE OF CHUNKS

string.('a':'z") # all letters from "a" to "z"

X

chunk_length

10

chunk_indices = index_chunks(x, size = chunk_length)
chunk_values chunks(x, size = chunk_length)

julia> [collect(chunk_indices) |
3-element Vector{UnitRange{Int64}}:
1:10
11:20
21:26

julia> [collect(chunk_values) |

3-element Vector{SubArray{String, 1, Vector{String}, Tuple{UnitRange{Int64}}, true}}:
["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]
["k", "1", "m", "n", "o", "p", "qg", "r", "s", "t"]
["u", "v", "w", "x", "y", "z"]

One common way to apply partitions for multithreading is by considering a number of chunks that are
proportional to the number of worker threads. Moreover, iterations can be based on to
get pairs of chunk index and either the subcollection or subindices.



PARTITION BY NUMBER OF THREADS

X = string.('a':'z"') # all letters from "a" to "z"

nr_chunks nthreads()

chunk_indices
chunk_values

index_chunks(x, n = nr_chunks)
chunks(x, n = nr_chunks)

chunk_iter = enumerate(chunk_indices) # pairs (i_chunk, chunk_index)

julia> |collect(chunk_indices) |
24-element Vector{UnitRange{Int64}}:
1:2

3:4

25:25
26:26

julia> [collect(chunk_iter)|

24-element Vector{Tuple{Int64, UnitRange{Int64}}}:
(1, 1:2)
(2, 3:4)

(23, 25:25)
(24, 26:26)

julia> [collect(chunk_values) |

24-element Vector{SubArray{String, 1, Vector{String}, Tuple{UnitRange{Int64}}, true}}:
["a", "b"]
["C", Ildll]

[y
["2"]

WORK DISTRIBUTION: DEFINING TASKS THROUGH CHUNKS

To define tasks through chunks, we need to partition the collection into smaller subsets that can be
processed concurrently. We've already discussed how to apply these techniques using the

[ChunkSplitters |package.

Let's consider a simple example where we want to parallelize a for-loop:



@THREADS

X = rand(10_000_000)

function foo(x)
output = similar(x)

@threads for i in eachindex(x)
output[i] = log(x[il)
end

return output
end

julia> [@btime foo($x) |
4.942 ms (123 allocations: 76.306 MiB)

@SPAWN

x = rand(10_000_000)

function foo(x, nr_chunks)
chunk_ranges = index_chunks(x, n=nr_chunks)
output = similar(x)

@sync for chunk in chunk_ranges
@spawn (@views @. output[chunk] = log(x[chunk]))
end

return output
end

julia> [@btime foo($x)]
5.301 ms (156 allocations: 76.308 MiB)

@SPAWN (EQUIVALENT)

x = rand(10_000_000)

function foo(x, nr_chunks)
chunk_ranges = index_chunks(x, n=nr_chunks)
output similar(x)
task_indices = Vector{Task}(undef, nr_chunks)

for (i, chunk) in enumerate(chunk_ranges)
task_indices[i] = @spawn (@views @. output[chunk] = log(x[chunk]))
end

return wait.(task_indices)
end

julia> [@btime foo($x)]
4.893 ms (148 allocations: 76.307 MiB)




The approach provides more control over the allocation of tasks to threads. For instance, we could
define the number of chunks as proportional to the number of worker threads.

@SPAWN
x = rand(10_000_000)

function foo(x, nr_chunks)
chunk_ranges = index_chunks(x, n=nr_chunks)
output = similar(x)

@sync for chunk in chunk_ranges
@spawn (@views @. output[chunk] = log(x[chunk]))
end

return output
end

julia> [@btime foo($x, 1 * nthreads()) |
4.923 ms (156 allocations: 76.308 MiB)

julia> [@btime foo($x, 2 * nthreads())]
4.898 ms (301 allocations: 76.323 MiB)

julia> [@btime foo($x, 4 * nthreads())]
4.462 ms (589 allocations: 76.349 MiB)

@SPAWN
x = rand(10_000_000)

function compute! (Coutput, x, chunk)
@turbo for j in chunk
output[j] = log(x[j1)
end
end

function foo(x, nr_chunks)
chunk_ranges = index_chunks(x, n=nr_chunks)
output = similar(x)

@sync for chunk in chunk_ranges
@spawn compute! (output, x, chunk)
end

return output
end

julia> [@btime foo($x, 1 * nthreads())]
4.418 ms (132 allocations: 76.307 MiB)

julia> [@btime foo($x, 2 * nthreads())]
4.546 ms (253 allocations: 76.320 MiB)

julia> [@btime foo($x, 4 * nthreads())]
3.659 ms (493 allocations: 76.344 MiB)




PARALLEL REDUCTIONS

So far, our exploration of parallelization has focused on cases with independent tasks. In particular,
the iterations in for-loops were independent, thereby defining an embarrassingly parallel program.
This was a deliberate choice, as not all tasks lend themselves to parallelization, due to inherent
dependencies between computations. In particular, when tasks aren't embarrassingly parallel, a naive
approach for their computation can not only lead to inefficiencies, but actually introduce critical
issues, including incorrect results.

Nonetheless, depending on the nature of the dependency, we can adapt our parallelization strategy to
still benefit from parallelization. One strategy involves dividing a large task into smaller independent
sub-tasks that can be executed concurrently. By doing so, we can execute the subtasks in parallel
without compromising the correctness of the results, as each sub-task remains independent of the
others. Once all sub-tasks complete, their results are combined to generate the final output.

The approach is particularly suitable for reduction operations. Moreover, its technical implementation
is a variant of the partition techniques previously presented. To illustrate it, we consider the simplest
scenario possible, where we simply compute the sum of elements of a vector [x].

JULIA'S DEFAULT (SEQUENTIAL)
X rand(10_000_000)

function foo(x)
output 0.

for i in eachindex(x)
output += x[i]
end

output
end

julia> [@btime foo($x)]
4.909 ms (0 allocations: 0 bytes)




@THREADS
x = rand(10_000_000)

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = Vector{Floaté6u}(undef, length(chunk_ranges))

@threads for (i,chunk) in enumerate(chunk_ranges)
partial_outputs[i] = sum(@view(x[chunk]))
end

return sum(partial_outputs)
end

julia> [@btime foo($x) |
1.163 ms (122 allocations: 13.234 KiB)

@SPAWN
X = rand(10_000_000)

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = Vector{Floatéu}(undef, length(chunk_ranges))

@sync for (i, chunk) in enumerate(chunk_ranges)
@spawn partial_outputs[i] = sum(@view(x[chunk]))
end

return sum(partial_outputs)
end

julia> [@btime foo($x)|
1.163 ms (155 allocations: 13.750 KiB)

FALSE SHARING IN REDUCTIONS

Cache contention represents a performance challenge where multiple processor cores compete for
shared cache resources. A particular manifestation of this issue known as false sharing arises when
multiple cores access data stored in the same cache line. To understand this issue, it's essential to
grasp how CPU caches function.

Processors use caches to store copies of frequently accessed data. They represent a smaller and
faster memory unit than RAM, and are organized into fixed-size blocks called cache lines (typically 64
bytes). When data is needed, the processor first checks the cache. If the data isn't found, this must be
retrieved from RAM and store a copy in the cache, a process that's significantly slower.

When multiple cores access data within the same cache line, the transfer of data follows a cache
coherency protocol. This is designed to maintain data consistency across cores. This protocol can lead
to situations where one core accesses data that isn't modified by another core, yet shares a cache



block with altered data. In such cases, the entire cache line may be invalidated, forcing the cores to
reload the entire cache block, despite there being no logical necessity to do so. This phenomenon is
known as false sharing, and can cause unnecessary cache invalidations and refetches. The
consequence is a significant degradation of the program's performance, particularly if threads
frequently modify their variables.

While false sharing can occur in various multithreading scenarios, it's particularly prevalent in
reduction operations. This case will be our focus next.

AN ILLUSTRATION AND SOLUTIONS FOR REDUCTIONS

Let's consider a simple scenario where the elements of a vector are summed after applying a

logarithmic transformation. We'll present two multithreaded implementations to illustrate the impact
of false sharing on performance.

The first implementation is a naive approach that closely resembles a typical sequential
implementation. Its goal is to illustrate false sharing. The issue arises because multiple threads are

repeatedly reading and writing adjacent memory locations in the | partial_outputs|vector. Since CPU

cache lines typically span several vector elements, this leads to cache invalidation and forced

synchronization between cores.

In contrast, the second implementation avoids false sharing, and we'll analyze why this is so after
presenting the code snippets.

SEQUENTIAL
x = rand(10_000_000)

function foo(x)
output = 0.

for i in eachindex(x)
output += log(x[i])
end

output
end

julia> [@btime foo($x)]
33.629 ms (O allocations: 0 bytes)




FALSE SHARING

x = rand(10_000_000)

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = zeros(length(chunk_ranges))

@threads for (i,chunk) in enumerate(chunk_ranges)
for j in chunk
partial_outputs[i] += log(x[j1)
end
end

return sum(partial_outputs)
end

julia> [@btime foo($x) |
12.579 ms (122 allocations: 13.234 KiB)

LOCAL VARIABLE (@THREADS)

X = rand(10_000_000)

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = zeros(length(chunk_ranges))

@threads for (i,chunk) in enumerate(chunk_ranges)
temp = 0.0
for j in chunk
temp += log(x[jl)
end
partial_outputs[i] = temp
end

return sum(partial_outputs)
end

julia> [@btime foo($x) |
3.579 ms (122 allocations: 13.234 KiB)




LOCAL VARIABLE (@SPAWN)
x = rand(10_000_000)

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = zeros(length(chunk_ranges))

@sync for (i,chunk) in enumerate(chunk_ranges)
@spawn begin
temp = 0.0
for j in chunk
temp += log(x[jl)
end
partial_outputs[i] = temp
end
end

return sum(partial_outputs)
end

julia> [@btime foo($x)]
3.379 ms (155 allocations: 13.750 KiB)

To address false sharing in parallel reductions, there are several strategies that can be employed. All
of them aim to prevent threads from repeatedly accessing the same cache line.

The previous example already presented one solution. It involves introducing a thread-local variable

called to accumulate results. In this way, each thread maintains its own accumulator, writing to
the shared array only once at the end.

Two additional solutions are presented below. The first one entails computing the reduction through a

separate function. This address false sharing by the same logic as before, where the accumulation is

done through a variable local to a function. The second solution involves defining [partial_outputs

as a matrix with extra rows (seven in particular), a technique known as vector padding. This approach
guarantees that each thread's accumulator is allocated on a different cache line, so that that
concurrent updates don't interfere with each other at the cache level.



FUNCTION

X = rand(10_000_000)

function compute(x, chunk)
temp = 0.0

for j in chunk
temp += log(x[j])
end

return temp
end

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = zeros(length(chunk_ranges))

@threads for (i,chunk) in enumerate(chunk_ranges)
partial_outputs[i] = compute(x, chunk)
end

return sum(partial_outputs)
end

julia> [@btime foo($x)]
3.504 ms (122 allocations: 13.234 KiB)

PADDING

x = rand(10_000_000)

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = zeros(7, length(chunk_ranges))

@threads for (i,chunk) in enumerate(chunk_ranges)
for j in chunk
partial_outputs[1,i] += log(x[j1)
end
end

return sum(@view(partial_outputs[:,1]1))
end

julia> [@btime foo($x)]
3.729 ms (122 allocations: 14.438 KiB)
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INTRODUCTION

Parallelizing code may seem straightforward at a first glance. However, once we start delving into its
implementation, it's rapidly revealed that an effective implementation can be a daunting task. As
we've discussed, naive implementations can lead to various issues, including performance problems
like suboptimal load balancing or false sharing, and more severe concerns such as data races.
Furthermore, even if the necessary skills for a correct implementation were mastered, the added

complexity can severely impair the code's readability and maintainability.

To assist users in overcoming these obstacles, several packages for parallelization have emerged.
These tools aim to simplify the implementation of multithreading, allowing users to leverage its
benefits without grappling with low-level intricacies. In this section, we'll present a few of these
packages. In particular, the focus will be on those that facilitate the application of multithreading to
embarrassingly parallel problems and reductions.

The first package we explore is [ohMyThreads]. This offers a collection of high-level functions and
macros that help developers parallelize operations with minimal effort. For instance, it eliminates the
need to manually partition tasks and tackles subtle performance issues like false sharing. We'll then
examine the package. Thanks to its reduced overhead, this package is capable of
streamlining parallelization for small objects. After this, we revisit the | Loopvectorization | package. In
particular, we introduce the macro [@tturbo], which combines the benefits of SIMD instructions with
multithreading.

PACKAGE "OHMYTHREADS"

As the package's documentation claims, strives to be a user-friendly package to
seamlessly apply multithreading. Consistent with its minimalist approach, the package only introduces

a handful of essential functionalities that could easily be part of Julia's [Base . The goal is to allow users
to implement code parallelization, even if they don't possess deep expertise in the subject.

Specifically, the package provides various higher-order functions and macros that internally handle
data-race conditions and performance issues like false sharing. Despite its simplicity, |OhMyThreads
still covers a significant range of scenarios, even supporting reduction operations.

In the following, we present the main higher-functions provided by the package. Before introducing
them, let's indicate several features that these functions share. Firstly, the names of these functions in

ohMyThreads | mirror those in [Base|, but adding a prefix of [ t]. For instance, the counterpart to is
[tmap]. Secondly, [ohMyThreads]| offers the option of customizing the parallelization process. This is


https://alfaromartino.github.io/
https://github.com/JuliaFolds2/OhMyThreads.jl

achieved through an integration with [ChunkSplitters| enabling customized work distributions

among tasks via two keyword arguments: [nchunks|(or equivalently [ntasks]) to define the number of
subsets in the partition, and to specify the number of elements in each subset.

Warning!
All the code snippets below assume you've already loaded the package
with [using OhMyThreads|.

PARALLEL MAPPING

The function serves as the multithreaded counterpart to [map]. Its syntax is [tmap(foo, x)],
where is the transforming function applied to each element of the collection [x]. Unfortunately,
applying in this form results in a performance loss. This is due to a technical matter arising from

the type instability of the object [Task].

To circumvent this issue and regain the lost performance, we must then explicitly indicate the output's
type. To do this, we need the function method | tmap(foo, T , x)|, where|T|represents the element
type of the output. Thus, if for instance the output is a [vector{Float64}], [T] would be [Float64].

Instead of directly declaring a more flexible alternative is to use |eltype(x) | making the output's
type mirror that of [x].

The package also provides an in-place version, [tmap! . In this case, since requires specifying
the output vector, there's no need to do any extra work to avoid performance losses.

Below, we illustrate the application of these functions. To provide a basis for comparison, we include

results of [map |and |map! | as single-threaded baselines.

rand(1_000_000)

X
1]

foo(x)
foo_parallell(x)
foo_parallel2(x)

julia>

3.254 ms (2 allocations: 7.629 MiB)

map(log, x)
tmap(log, x)
tmap(log, eltype(x), x)

julia> [foo_paralleli($x) ]
1.494 ms (568 allocations: 16.958 MiB)

julia> [foo_parallel2($x) |
337.724 pys (155 allocations: 7.642 MiB)




rand(1_000_000)
similar(x)

X
output

foo! Coutput, x)
foo_parallel! (output,x)

julia>

3.303 ms (0 allocations: 0 bytes)

map!(log, output, x)
tmap! (log, output, x)

julia> | foo_parallel!($x) |
334.747 ps (150 allocations: 13.188 KiB)

additionally provides the option to control the work distribution among tasks. This is
done through the keyword arguments | nchunks | and | chunksize |, which are internally implemented via
the package [ChunkSplitters]. Specifically, controls the number of subsets in the partition,
while sets the number of elements per task. Note that [nchunks] and [chunksize| are
mutually exclusive options, so that only one of them can be used at a time.

To illustrate the use [nchunks ] we'll set its value equal to [nthreads()]. By setting a number of chunks

equal to the number of worker threads, we're adopting an even distribution among tasks, similar to

how [@threads| operates. To set the same number with we'll make use of the floor

division operator [+]. This is a binary operator that rounds a division down to the nearest integer

towards zero. '

X = rand(1_000_000)

foo(x) = tmap(log, eltype(x), x; nchunks = nthreads())

julia> [@btime foo($x)|
339.006 ps (155 allocations: 7.642 MiB)

rand(1_000_000)

x
1

foo(x)

tmap(log, eltype(x), x; chunksize = length(x) + nthreads())

julia> [@btime foo($x)|
355.825 us (164 allocations: 7.643 MiB)

Do-Block Syntax

When requires passing more complex functions, we can still use
an anonymous function. In this case, the do-block syntax comes in
handy. It enables the creation of multi-line functions, making code more
readable. Below, we show an example.



http://localhost:8000/PAGES/03c_functions/#do-syntax

x = rand(1_000_000)
function foo(x)

output = tmap(a -> 2 * log(a), x)

return output
end

x = rand(1_000_000)
function foo(x)
output = tmap(x) do a
2 * log(a)

end

return output
end

ARRAY COMPREHENSIONS

ohMyThreads| also provides an alternative to via array comprehensions. Unlike the standard
implementation in [Base], the version from [ohMyThreads| combines a multithreaded variant of

with a generator. Similarly to [tmap], specifying the output's element type is necessary to
prevent performance losses.

rand(1_000_000)
similar(x)

X
output

foo(x)
foo_parallell(x)
foo_parallel2(x)

jutia>

3.231 ms (2 allocations: 7.629 MiB)

[log(a) for a in x]
tcollect(log(a) for a in x)
tcollect(eltype(x), log(a) for a in x)

julia> | foo_paralleli($x) |
1.489 ms (568 allocations: 16.958 MiB)

julia> [foo_parallel2($x) |
336.948 ps (155 allocations: 7.642 MiB)

REDUCTIONS AND MAP-REDUCTIONS
also offers multithreaded versions of and [mapreduce]. They're respectively

referred to as |treduce| and [tmapreduce| These functions internally handle the race conditions
inherent in reductions and address performance issues like false sharing. Notably, unlike [map], these




functions can achieve optimal performance without requiring a specified output type.

x
1

rand(1_000_000)

foo(x) = reduce(+, x)
foo_parallel(x) = treduce(+, x)
julia> | foo($x)

86.102 us (0 allocations: 0 bytes)

julia> [foo_parallel($x) ]
29.542 ps (513 allocations: 43.047 KiB)

rand(1_000_000)

X
]

foo(x) = mapreduce(log, +, x)
foo_parallel(x) = tmapreduce(log, +, x)
julia>

3.385 ms (0 allocations: 0 bytes)

julia> [foo_parallel($x) ]
389.624 pus (511 allocations: 43.000 KiB)

FOREACH AS A FASTER OPTION FOR MAPPINGS

The package also offers an implementation similar to for-loops through the function [tforeach]. Since
we haven't covered the single-threaded version [foreach], we begin by presenting it. The function
follows a syntax identical to [map], and is usually implemented using a do-block syntax, as shown

below.

x = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = log(x[i])
end

return output
end

jutia>

3.329 ms (2 allocations: 7.629 MiB)



http://localhost:8000/PAGES/03c_functions/#do-syntax

X = rand(1_000_000)

function foo(x)
output = similar(x)

foreach(i —> output[i] = log(x[i]), eachindex(x))

return output
end

jutie>

3.251 ms (2 allocations: 7.629 MiB)

X = rand(1_000_000)

function foo(x)
output = similar(x)

foreach(eachindex(x)) do i
output[i] = log(x[il)
end

return output
end

jutia>

3.265 ms (2 allocations: 7.629 MiB)

Despite the similarities of and [tmap] [tforeach] is more performant. Furthermore, it
doesn't incur a performance penalty when the output type isn't specified.

X = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = log(x[i])
end

return output
end

jutia>

3.281 ms (2 allocations: 7.629 MiB)




X = rand(1_000_000)

function foo(x)
output = similar(x)

tmap(eachindex(x)) do i
output[i] = log(x[il)
end

return output
end

jutie>

1.868 ms (571 allocations: 24.589 MiB)

x = rand(1_000_000)

function foo(x)
output = similar(x)

tmap(eltype(x), eachindex(x)) do i
output[i] = log(x[il)
end

return output
end

jutia>

582.144 ps (158 allocations: 15.272 MiB)

x = rand(1_000_000)

function foo(x)
output = similar(x)

tmap(eltype(x), eachindex(x)) do i
output[i] = log(x[il)
end

return output
end

juties

582.144 ps (158 allocations: 15.272 MiB)

Just like [ tmap

tforeach| offers the keyword arguments [nchunks | and |chunksize| to control the

i’

workload distribution among worker threads. For the illustration, we use a distribution analogous to

the one used above for [tmap].




x = rand(1_000_000)

function foo(x)
output = similar(x)

tforeach(eachindex(x); nchunks = nthreads()) do i
output[i] = log(x[il)
end

return output
end

julia>

340.708 ps (154 allocations: 7.642 MiB)

x = rand(1_000_000)

function foo(x)
output = similar(x)

tforeach(eachindex(x); chunksize = length(x) + nthreads()) do i
output[i] = log(x[i])
end

return output
end

julia>

358.567 us (161 allocations: 7.643 MiB)

POLYESTER: PARALLELIZATION FOR SMALL OBJECTS

Warning!

All the code snippets below assume you executed [using Polyester |to
load the package.

One key limitation of multithreading is its overhead due to the creation and scheduling of tasks. This

issue can render parallelization impractical for smaller computational tasks, as the cost of thread

management would outweigh any potential performance gain. Considering this, the application of

multithreading is commonly reserved for objects sufficiently large to justify the cost.

The package addresses this limitation by implementing techniques that reduce the
overhead. In this way, it becomes possible to parallelize objects that, otherwise, would be deemed too

small to benefit from multithreading. Importantly, the package requires expressing the code to be

parallelized as a for-loop.



To illustrate the benefits of the package, let's compare its performance to traditional methods. The
following example considers a for-loop with 500 iterations, a relatively low number for applying
multithreading. Indeed, the first tab shows that an approach based on is slower than its
single-threaded variant. In contrast, achieves comparable performance to the single-
threaded variant, despite the low number of iterations. To use [Polyseter] we simply need to prefix
the for-loop with the macro.

X = rand(500)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = log(x[il)
end

return output
end

jutia>

1.552 pus (1 allocations: 4.062 KiB)

X = rand(500)

function foo(x)
output = similar(x)

@threads for i in eachindex(x)
output[i] = log(x[il)
end

return output
end

jutia>

9.362 us (122 allocations: 16.672 KiB)

X = rand(500)

function foo(x)
output = similar(x)

@batch for i in eachindex(x)
output[i] = log(x[il)
end

return output
end

julia>

992.000 ns (1 allocations: 4.062 KiB)




For larger objects, it's worth noting that may not necessarily outperform (or
underperform) alternative methods. In such cases, it's recommend benchmarking your particular

application.

REDUCTIONS

also supports reduction operations. These can be implemented by prepending the for-
loop with the expression [@batch reduce=(<tuple with operation and variable reduced>)]|

Notably, Polyester's implementation has been designed to avoid common pitfalls of reductions, such
as data races and false sharing, ensuring both correctness and performance. The following example
illustrates its application.

x = rand(250)

function foo(x)
output = 0.0

for i in eachindex(x)
output += log(x[i])
end

return output
end

julia> [@btime foo($x) |
745.289 ns (0 allocations: 0 bytes)

x = rand(250)

function foo(x)
output = 0.0

@batch reduction=( (+, output) ) for i in eachindex(x)
output += log(x[il])
end

return output
end

julia> [@btime foo($x) |
543.889 ns (0 allocations: 0 bytes)

We can also incorporate more than one reduction operation per iteration, as demonstrated below.



x = rand(250)

function foo(x)
outputl = 1.0
output2 = 0.0

for i in eachindex(x)
outputl *= log(x[il)
output2 += exp(x[i])
end

return outputl, output2
end

julia> [@btime foo($x)]
1.241 ps (0 allocations: 0 bytes)

x = rand(250)

function foo(x)
outputl = 1.0
output2 = 0.0

@batch reduction=( (*, outputl), (+, output2) ) for i in eachindex(x)
outputl *= log(x[il)
output2 += exp(x[il)

end

return outputl, output2
end

julia> [@btime foo($x) |
630.302 ns (0 allocations: 0 bytes)

x = rand(250)

function foo(x)
outputl = 1.0
output2 = 0.0

@batch reduction=( (%, outputl), (+, output2) ) for i in eachindex(x)
outputl = outputl * log(x[i])
output2 = output2 + exp(x[il)

end

return outputl, output2
end

julia> [@btime foo($x)]
641.075 ns (0 allocations: 0 bytes)

LOCAL VARIABLES




also treats variables as local per iteration, unlike |@threads |.

function foo()
out = zeros(Int, 2)
temp = 0

for i in 1:2
temp = i; sleep(i)
out[i] = temp

end

return out
end

julia>
2-element Vector{Int64}:
1

2

function foo()
out = zeros(Int, 2)

@threads for i in 1:2
temp = i; sleep(i)
out[i] = temp

end

return out
end

julia>
2-element Vector{Int64}:
1

2

function foo()
zeros(Int, 2)
0

out
temp

@threads for i in 1:2
temp = i; sleep(i)
out[i] = temp

end

return out
end

julia>
2-element Vector{Int64}:
2

2




function foo()
out = zeros(Int, 2)
temp = 0

@batch for i in 1:2
temp
out[i]

i; sleep(i)
temp

end

return out
end

julia> | foo($x)
2-element Vector{Int64}:
1

2

SIMD + MULTITHREADING

Warning!
All the code snippets below assume you've already loaded the package

with [using LoopVectorization|.

We've already covered the package |LoopVectorization|in the section about SIMD instructions. We

now revisit this package to demonstrate its ability to combine SIMD with multithreading. The feature is

achieved through integration with the package.

The primary approach to implementing the functionality involves the macro, which provides

a parallelized version of [@turbo] Unlike the @[threads| macro, where the application of SIMD
optimizations is left to the compiler's discretion, automatically applies SIMD.

To illustrate the benefits of [@tturbo], let's consider an example scenario where SIMD isn't applied
automatically by [@threads], despite that the operation is well-suited for this purpose.


http://localhost:8000/PAGES/10c_simd

BitVector(rand(Bool, 100_000))
rand(100_000)

< X
1

function foo(x,y)
output = similar(y)

for i in eachindex(x)
output[i] = ifelse(x[i], log(Cy[il), y[il * 2)
end

output
end

jutia>

587.694 pus (2 allocations: 781.297 KiB)

BitVector(rand(Bool, 100_000))
rand(100_000)

< X
1

function foo(x,y)
output = similar(y)

@threads for i in eachindex(x)
output[i] = ifelse(x[i], log(Cy[il), y[il * 2)
end

output
end

jutia>

80.625 pus (123 allocations: 793.906 KiB)

BitVector(rand(Bool, 100_000))
rand(100_000)

< X
1

function foo(x,y)
output = similar(y)

@tturbo for i in eachindex(x)
output[i] = ifelse(x[i], log(Cy[il), y[il * 2)
end

output
end

jutia>

57.225 ps (2 allocations: 781.297 KiB)

The @tturbo] macro is also available as a broadcasting version. Although the for-loop
implementation could be more performant in some scenarios, the broadcasting variant significantly
simplifies the syntax. Furthermore, it's particularly useful for parallelizing broadcasting operations,



since no built-in macro currently exists for this purpose. Below, we provide a simple example that
demonstrates the improvement in readability achieved by using this variant.

X = rand(1_000_000)

function foo(x)
output = similar(x)

@tturbo for i in eachindex(x)
output[i] = log(x[i]) / x[il
end

return output
end

julia>

525.304 ps (2 allocations: 7.629 MiB)

rand(1_6000_000)

X
1]

foo(x)

julia>

524.273 ps (2 allocations: 7.629 MiB)

@tturbo log.(x) ./ x

FLOOPS: PARALLEL FOR-LOOPS (OPTIONAL)

Warning!
All the code snippets below assume you've already loaded the package
with |using FLoops |.

We conclude this section with a brief overview of the package [FLoops|. The presentation is labeled as
optional since its use beyond simple applications could require some workarounds. Moreover, it

appears not to be actively maintained.

The primary macro provided by the package is [@floop], exclusively designed to parallelize for-loops.
An example of its usage is provided below.


https://juliafolds.github.io/FLoops.jl/stable/howto/avoid-box/

x = rand(1_000_000)

function foo(x)
output = similar(x)

for i in eachindex(x)
output[i] = log(x[i])
end

return output
end

julia>

3.353 ms (2 allocations: 7.629 MiB)

x = rand(1_000_000)

function foo(x)
output = similar(x)

@floop for i in eachindex(x)
output[i] = log(x[i])
end

return output
end

jutia>

388.563 us (157 allocations: 7.645 MiB)

@f loop] can also be used for reductions by including at the beginning of the line with a
reduction operation. The macro addresses the inherent data race of reductions and avoids false

sharing issues.

x = rand(1_000_000)

function foo(x)
output = 0.0

for i in eachindex(x)
output += log(x[il)
end

return output
end

jutia>

3.396 ms (0 allocations: 0 bytes)




x = rand(1_000_000)

function foo(x)
chunk_ranges = index_chunks(x, n=nthreads())
partial_outputs = zeros(length(chunk_ranges))

@threads for (i,chunk) in enumerate(chunk_ranges)
for j in chunk
partial_outputs[i] += log(x[j1)
end
end

return sum(partial_outputs)
end

jutie>

1.314 ms (122 allocations: 13.234 KiB)

x = rand(1_000_000)

function foo(x)
output = 0.0

@floop for i in eachindex(x)
@reduce output += log(x[il)
end

return output
end

julia>

370.835 ps (252 allocations: 17.516 KiB)

FOOTNOTES

' For example, would return[1]



