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Notation

This is a derivation

This is some comment

This is a comment on advanced topics which are not part of the course (you can ignore it without loss of continuity

regarding the text)

� I denote vectors by bold lowercase letters (for instance, x) and matrices by bold

capital letters (for instance, X).

� To differentiate between the verb “maximize” and the operator “maximum”, I

denote the former with “max” and the latter with “sup” (i.e., supremum). The

same caveat applies to “minimize” and “minimum”, where I use “min” and “inf”,

with the latter indicating infimum.

� “iff” means “if and only if”

� exp (x) is the function ex.

� Random variables are denoted with a bar below. For instance, x.

These notes contain hyperlinks in blue and red text. If you are using Adobe Acrobat

Reader, you can click on the link and easily navigate back by pressing Alt+Left Arrow.



Lecture Note 1

Math Review



Mart́ın Alfaro Lecture Note 1. Math Review

The goal of this note is to review some of optimization techniques and the Envelope

Theorem. It complements the slides that cover the Math Review. The explanations are

kept to the minimum, and the note only aims at providing cookbook procedures to solve

exercises.

1.1 Unconstrained Optimization

We establish conditions for a maximization and a minimization.

1.1.1 Maximization

Let f : X1×X2×Λ → R with Xi := [0, xi] for i = 1, 2 and Λ ⊆ R++. The maximization

problem is

max
(x1,x2)∈X1×X2

f (x1, x2;α) .

A solution to the problem is a vector of endogenous variables as a function of all

the parameters: (x∗
1 (α) , x

∗
2 (α)). Sometimes the following notation is used to define the

solutions:

(x∗
1 (α) , x

∗
2 (α)) := argmax

(x1,x2)∈X1×X2

f (x1, x2;α) .

The value function is the objective function evaluated at the solution. Since the

solution is a function of the parameters, the value function is a function of the parameters:

f ∗ (α). Formally, it is defined by:

f ∗ (α) := f [x∗
1 (α) , x

∗
2 (α) ;α] := sup

(x1,x2)∈X1×X2

f (x1, x2;α) .

Now, let’s establish the conditions to pin down the solutions (x∗
1 (α) , x

∗
2 (α)). We

suppose that the Inada conditions hold, and so we rule out boundary solutions.1 Since

any solution must be interior, the FOCs (first-order conditions) are necessary to obtain

1The Inada conditions in this case are lim
x1→0

∂f(x1,x2;α)
∂x1

= lim
x2→0

∂f(x1,x2;α)
∂x2

= ∞ and lim
x1→x1

∂f(x1,x2;α)
∂x1

=

lim
x2→x2

∂f(x1,x2;α)
∂x2

< 0 for each α ∈ Λ.

2
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the solution:

∇f (x1, x2;α) :=

 ∂f(x1,x2;α)
∂x1

∂f(x1,x2;α)
∂x2

 = 0.

Let the Hessian Matrix be

H (x1, x2;α) :=

 ∂2f(x1,x2;α)

∂x2
1

∂2f(x1,x2;α)
∂x1∂x2

∂2f(x1,x2;α)
∂x2∂x1

∂2f(x1,x2;α)

∂x2
2

 .

and when evaluated at the solution:

H [x∗
1 (α) , x

∗
2 (α) ;α] = H (x1, x2;α)⌋ x1 = x∗

1 (α)
x2 = x∗

2 (α)

.

A sufficient SOC (second-order condition) for an interior (local) maximum is

H (x1, x2;α) to be negative definite when evaluated at the solution. For two variables

this requires that:

�
∂2f(x1,x2;α)

∂x2
i

⌋
< 0 for i = 1, 2, and

� detH [x∗
1 (α) , x

∗
2 (α) ;α] > 0.

When H is symmetric, the conditions can be simplified. In the example, we know that

the cross derivatives are equal, since f ∈ C2 (i.e. f is twice continuously differentiable)

and we can apply Young’s theorem. Therefore, ∂2f(x1,x2;α)
∂x1∂x2

= ∂2f(x1,x2;α)
∂x2∂x1

, and the sufficient

condition for the SOC to hold is simpler and given by:

�
∂2f(x1,x2;α)

∂x2
i

⌋
< 0 for either i = 1, 2 (if it holds for one, it holds for the other), and

� detH [x∗
1 (α) , x

∗
2 (α) ;α] > 0.

For more than two variables, we can generalize the condition for H ∈ RN×N symmetric

that it is negative definite by checking that

all the leading principal minors have the sign (−1)k ∆k> 0 for each k = 1, 2, ..., N.

For instance, for a function f ∈ C2 of three variables (x1,, x2, x3) (so thatH is symmetric),

3
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the Hessian is :

H (x1, x2, x3) :=


∂2f(·)
∂x2

1

∂2f(·)
∂x1∂x2

∂2f(·)
∂x1∂x3

∂2f(·)
∂x2∂x1

∂2f(·)
∂x2

2

∂2f(·)
∂x2∂x3

∂2f(·)
∂x3∂x1

∂2f(·)
∂x3∂x2

∂2f(·)
∂x2

3

 .

Thus, H is definite negative at the solution if the following expressions evaluated at the

solution hold:

�
∂2f(·)
∂x2

1
< 0,

� det

 ∂2f(·)
∂x2

1

∂2f(·)
∂x1∂x2

∂2f(·)
∂x2∂x1

∂2f(·)
∂x2

2

 > 0, and

� detH (·) < 0.

1.1.2 Minimization

Assuming that there are no boundary solutions, the FOCs to identify the minimum

function f are given by ∇f (x1, x2;α) = 0. Furthermore, a sufficient SOC is that H is

positive definite. When H ∈ RN×N is symmetric, this requires that

all the leading principal minors ∆k satisfy ∆k> 0 for each k = 1, 2, ...N.

Thus, for f ∈ C2 and two variables (so that H is symmetric), H is definite positive

at the solution if the following holds when we evaluate the expressions at the solution:

�
∂2f(x1,x2;α)

∂x2
i

> 0 for either i = 1, 2, and

� detH [x∗
1 (α) , x

∗
2 (α) ;α] > 0.

Likewise, we can generalize this result for three variables. Formally, for f ∈ C2 and three

variables (so that H is symmetric), H is definite positive at the solution if the following

expressions evaluated at the solution hold:

�
∂2f(·)
∂x2

1
> 0,

� det

 ∂2f(·)
∂x2

1

∂2f(·)
∂x1∂x2

∂2f(·)
∂x2∂x1

∂2f(·)
∂x2

2

 > 0, and

4
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� detH (·) > 0.

1.2 Constrained Optimization (Lagrange)

A constrained optimization imposes some restrictions on the values that the domain

X1 × X2 can take. When the objective function and the constraints are differentiable,

the optimization problem can be solved by using Lagrangian techniques. This procedure

can be summarized by two steps:

[1] Construct the Lagrangian function

[2] Proceed as any unconstrained problem, but taking the Lagrangian as the objec-

tive function. This means you have to optimize with respect to both the original

variables and the Lagrange multiplier.

We consider the case of a maximization, since the minimization problem is similar. Let

the problem be

max
x1,x2

f (x1, x2;α)

subject to κ = g (x1, x2;α) ,

where α, κ are parameters. Then, the Lagrangian is

L (x1, x2, λ;α, κ) := f (x1, x2;α) + λ [κ− g (x1, x2;α)] ,

and we optimize L as if it were an unconstrained problem (the same FOCs and SOCs).

Notice how we have written the constraint in the Lagrangian: the parameter κ minus

the function g. We could have defined it the other way round2 and obtained the same

optimal solutions x∗
1 (α, κ) and x∗

1 (α, κ). However, writing the constraint in the way

we did ensures that the Lagrange multiplier λ∗ (α, κ) has a positive sign. This is only

important when λ∗ has some economic interpretation, as it happens in consumer theory.

See Section 1.4.2.

2That is, L (x1, x2, λ;α, κ) := f (x1, x2;α) + λ [g (x1, x2;α)− κ]
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1.3 Envelope Theorem

Next, we’ll review the Envelope Theorem. This provides an easy way to calculate the

impact on the value function of a parameter change.

1.3.1 Envelope Theorem for Unconstrained Optima

Let f (x1, x2;α) be the objective function, where x1 and x2 are decision variables and α

is a parameter. Suppose that the optimization problem is:

max
x1,x2

f (x1, x2;α) .

Assuming there are no boundary solutions, we can characterize the solution through the

FOCs:

∂f (x1, x2;α)

∂x1

= 0,

∂f (x1, x2;α)

∂x2

= 0.

Let the solution be x∗
1 (α) and x∗

2 (α). The value function f ∗ is the objective function

evaluated at its optimal solutions, which is given by

f ∗ (α) := f [x∗
1 (α) , x

∗
2 (α) ;α] .

The Envelope Theorem provides a way to identify value of df∗(α)
dα

. To ease notation,

we write derivatives as function the values at which they are evaluated. For example,

∂f [x∗
1 (α) , x

∗
2 (α) ;α]

∂α
:=

∂f (x1, x2;α)

∂α

⌋
x1 = x∗

1 (α)
x2 = x∗

2 (α)

.

Taking the derivative of f ∗ with respect to α:

df ∗ (α)

dα
=

∂f [x∗
1 (α) , x

∗
2 (α) ;α]

∂x1

dx∗
1 (α)

dα
+

∂f [x∗
1 (α) , x

∗
2 (α) ;α]

∂x2

dx∗
2 (α)

dα︸ ︷︷ ︸
indirect effects

+
∂f [x∗

1 (α) , x
∗
2 (α) ;α]

∂α︸ ︷︷ ︸
direct effects

.

6
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But, by the FOCs,

df ∗ (α)

dα
=

∂f [x∗
1 (α) , x

∗
2 (α) ;α]

∂x1︸ ︷︷ ︸
=0

dx∗
1 (α)

dα
+
∂f [x∗

1 (α) , x
∗
2 (α) ;α]

∂x2︸ ︷︷ ︸
=0

dx∗
2 (α)

dα
+
∂f [x∗

1 (α) , x
∗
2 (α) ;α]

∂α
.

which provides the main result of the Envelope Theorem.

Result 1.1 Envelope Theorem for Unconstrained Optimization:

df ∗ (α)

dα
=

∂f (x1, x2;α)

∂α

⌋
x1 = x∗

1 (α)
x2 = x∗

2 (α)

.

The practical implication of this result is that, if you are interested in the impact of α on

the optimal objective function, you only have to look at the direct effect of α on f ∗—the

impact on f ∗ due to variations in x∗
1 and x∗

2 are irrelevant.

1.3.2 Constrained Optima

The Envelope Theorem can also be applied to the case of unconstrained maxima. Sup-

pose now the optimization problem is

max
x1,x2

f (x1, x2;α) subject to κ = g (x1, x2;α).

The Lagrangian is L (x1, x2, λ;α) := f (x1, x2;α) + λ [κ− g (x1, x2;α)], which delivers

the following FOCs:

FOC:


∂L (x1,x2,λ;α)

∂x1
= ∂f(x1,x2;α)

∂x1
− λ∂g(x1,x2;α)

∂x1
= 0,

∂L (x1,x2,λ;α)
∂x2

= ∂f(x1,x2;α)
∂x2

− λ∂g(x1,x2;α)
∂x2

= 0,
∂L (x1,x2,λ;α)

∂λ
= κ− g (x1, x2;α) = 0.

This enables us to obtain the solutions x∗
1 (α) , x

∗
2 (α) , λ

∗ (α) and the value function

f ∗ (α) := f [x∗
1 (α) , x

∗
2 (α) ;α]. The main implication of the Envelope Theorem is stated

in the following.

7
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Result 1.2 Envelope Theorem for Constrained Optima:

df ∗ (α)

dα
=

dL ∗ (α)

dα
=

∂L (x1, x2;α)

∂α

⌋
x1 = x∗

1 (α)
x2 = x∗

2 (α)

.

Proof. (OPTIONAL) L ∗ (α) := L [x1 (α) , x2 (α) , λ (α) ;α]

dL∗(α)
dα

=
dL [·]
dα

=
∂L [·]
∂x1

dx1(α)
dα

+
∂L [·]
∂x2

dx2(α)
dα

+
∂L [·]
∂λ

dλ(α)
dα

+
∂L [·]
∂α

⇒ dL∗(α)
dα

=
dL [·]
dα

=
∂L [x1(α),x2(α),λ(α);α]

∂α

Also, let f∗ (α) :=f [x1 (α) , x2 (α) ;α] and g∗ (α) :=g [x1 (α) , x2 (α) ;α]

df∗(α)
dα

=
∂f [·]
∂x1

dx1(α)
dα

+
∂f [·]
∂x2

dx2(α)
dα

+
∂f [·]
∂α

and by the FOCs:

⇒ df∗(α)
dα

=
(
λ

∂g[·]
∂x1

)
dx1(α)

dα
+
(
λ

∂g[·]
∂x2

)
dx2(α)

dα
+

∂f [·]
∂α

The constraint at the optimal value has to satisfy g∗ (α) = κ and so that if α changes, the constraint cannot change.

Formally,

dg∗(α)
dα

= 0, which implies that λ
dg∗(α)

dα
= 0. Thus,

λ
∂g[·]
∂x1

dx1(α)
dα

+ λ
∂g[·]
∂x2

dx2(α)
dα

+ λ
∂g[·]
∂α

= 0

⇒ λ
∂g[·]
∂α

= −λ
∂g[·]
∂x1

dx1(α)
dα

− λ
∂g[·]
∂x2

dx2(α)
dα

Using this result, now

⇒ df∗(α)
dα

=

(
λ
∂g [·]
∂x1

)
dx1 (α)

dα
+

(
λ
∂g [·]
∂x2

)
dx2 (α)

dα︸ ︷︷ ︸
=−λ

∂g[·]
∂α

+
∂f [·]
∂α

which implies that
df∗(α)

dα
=

∂f [·]
∂α

− λ
∂g[·]
∂α

. Since
∂L [·]
∂α

=
∂f [·]
∂α

− λ
∂g[·]
∂α

, the result follows. ■

1.4 Applications

I provide two applications of the Envelope Theorem. The first one provides a a cookbook

procedure to apply it. The second example uses the Envelope Theorem to provide an

interpretation for the Lagrange multiplier.

1.4.1 Consumer Theory

Suppose the existence of two goods, 1 and 2, with prices p1 and p2. A consumer has

income Y , and has to decide on the level of consumption of goods 1 and 2, denoted by

x1 and x2. The optimization problem is:

max
x1,x2

U (x1, x2) subject to Y = p1x1 + p2x2,

8
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wich provides the solutions x∗
1 (Y, p1, p2) and x∗

2 (Y, p1, p2).

The value function, which in the context of consumer theory is called the indirect

utility function, is

U∗ (Y, p1, p2) := U [x∗
1 (Y, p1, p2) , x

∗
2 (Y, p1, p2)] .

We want to know how U∗ changes when there is a ceteris paribus change in either Y

or p1. The Envelope Theorem allows us to do this, without the need to solve the whole

optimization problem.

Procedure to apply the Envelope Theorem

Step 1. Construct the Lagrangian: L (x1, x2;Y, p1, p2) := U (x1, x2) +

λ [Y − p1x1 − p2x2].

Step 2. Take derivatives of the Lagrangian with respect to each parameter of

interest (without evaluating them at the optimal values):

�
∂L (x1,x2;Y,p1,p2)

∂Y
= λ, and

�
∂L (x1,x2;Y,p1,p2)

∂p1
= −λx1.

Step 3. Evaluate each derivative at the optimal value to obtain dU∗(Y,p1,p2)
dY

and

dU∗(Y,p1,p2)
dp1

. Formally,

�
dU∗(Y,p1,p2)

dY
= λ∗ (Y, p1, p2), and

�
dU∗(Y,p1,p2)

dp1
= −λ∗ (Y, p1, p2)x

∗
1 (Y, p1, p2).

The second step in particular considerably simplifies the calculations, since it is only

the partial derivative with respect to the parameter. In other terms, it does not re-

quire plugging in the optimal solution into the Lagrangian and evaluating the total

differential—this requires more work, since it includes computing the impact of a pa-

rameter change on each optimal consumption.

9
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1.4.2 An Interpretation of the Lagrange Multiplier

Suppose that the optimization problem has the following form:

max
x1,x2

f (x1, x2) subject to κ = g (x1, x2),

where the only parameter is then κ. The Lagrangian is

L := f (x1, x2) + λ [κ− g (x1, x2)] .

Denote the solution by x∗
1 (κ), x

∗
2 (κ), and λ∗ (κ). Moreover, let the value function be

f ∗ (κ). By applying the Envelope Theorem, we obtain that

df ∗ (κ)

dκ
= λ∗ (κ) ,

and so λ∗ gives the impact on the value function when the constraint is relaxed in one

unit.

To illustrate the interpretation, suppose that we are analyzing a consumer’s problem.

Given that the constraint represents a consumer’s budget constraint, the result implies

that

dU∗ (Y, p1, p2)

dY
= λ∗ (Y, p1, p2) .

The term λ∗ (·) indicates how the maximum utility of the consumer increases when

the consumer has one additional dollar. This is whyλ∗ represents the marginal utility

of income in consumer theory: how the maximum utility increases when there is a

unitary increase in the consumer’s income.

1.5 Elasticities

It takes some time to get used to work with elasticities. However, it is crucial that you

do so due to two reasons. First, it allows us to get rid of measure units, by expressing the

derivatives in percentage terms. Additionally, while expressions for some derivatives can

be cumbersome, expression for elasticities could be quite neat. This is usually the case

10
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when a function is log-linear (i.e., it becomes linear after expressing it in logarithms).

In the next section, I explain the concept of elasticity and the different ways to

calculate it. Then, I provide some examples.

1.5.1 Definition of Elasticity

To illustrate the concept of elasticity, consider some good with demand q (p) and price

p. The price elasticity of the demand is denoted by ε (p), and remember that there are

three equivalent ways to expressing it:

[1] −dq(p)/q(p)
dp/p

,

[2] −dq(p)
dp

p
q(p)

, or

[3] −d ln q(p)
d ln p

.

The negative sign of each term reflects that the elasticity is usually expressed in absolute

terms. If dq(p)
dp

were positive, we would dispense with the negative sign.

The first expression is the definition of elasticity, and the most intuitive one to explain

the concept. Rewriting it in terms of finite variations:

−
∆q(p)
q(p)

× 100
∆p
p
× 100

(1.1)

Let’s analyze what the denominator in (1.1) tells us. The term ∆p/p means the variation

of p relative to the value of p. For instance, consider that p = 200 and ∆p = 2. This

means that the prices have varied in 2 dollars, starting from a total price of 200. Thus,

the variation of two dollars represents a 1% variation, since ∆p
p
× 100 = 2

200
× 100 = 1.

The interpretation of the numerator in (1.1) is similar. Therefore, ε (p) is the percentage

of variation in the quantities when price varies in 1%. For instance, if ∆q(p)
q(p)

× 100 = 8 so

that (1.1) equals 8%, we can conclude that a increase in price of 1% results in decrease

of an 8% in quantities.

Although the first expression provides a clear-cut interpretation, it is usually the

second and the third expressions that we use for computing elasticities. In particular,

11
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we will make extensive use of the third one throughout the course. The key to understand

expressions like −d lnx(p)
d ln p

is treating the numerator and denominator like differentials.

To see this, define the function y (x) := ln q. A differential is defined by dy = y′ (x) dx,

determining that dy = dx
x

since y′ (x) = 1
x
. By using in particular that y (x) := lnx, we

get d lnx = dx
x
. This explains why the numerator in (1.1) can be expressed as either

dx(p)
x(p)

or d lnx (p).

1.5.2 Examples

We provide two examples. The first one shows how the use of logs can simplify consid-

erably the elasticity calculations. Then, we show the computation of derivatives with

respect to ln p when the term ln p does not appear explicitly.

1.5.2.1 Applying Logs Transformations

Every time you have the product of power functions, you can linearize the equation by

applying logs. This makes calculations of elasticities easier.

To fix ideas, let’s consider the following demand

q (p;A) := Ap−σ,

where A, σ > 0 are parameters.

The price elasticity of demand can be calculated in two steps. First, we take logs of

x, determining

ln q (p;A) = lnA− σ ln p.

In a second step, we calculate the elasticity by exploiting that the equation is log-linear.

To clearly show this, define y := ln q, x := ln p, and α := lnA. Then, the demand

function becomes

y = α− σx,

12
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which is a linear function. Therefore,

∂y

∂x
=

∂ ln q (p;A)

∂ ln p
= −σ,

and so the price elasticity of demand is σ.

The result points out that the power of any variable is its elasticity when we have

a function that is the product of power functions. To provide an additional example of

this, notice that the term A trivially has a power of 1. Hence, we can immediately realize

that the elasticity of x with respect to A is in fact one. This can be proved formally in

the same way as we did with p:

∂y

∂α
=

∂ ln q (p;A)

∂ lnA
= 1.

1.5.2.2 The Case where ln p Does Not Appear Explicitly

Even the equation to be derived does not include terms like ln x and ln p explicitly, we

can express it in terms of them. For example, let’s take the following demand:

q (p) := exp (A− bp)

where A, b > 0.

Applying logs, the function becomes

ln q (p) = A− bp

and so

d ln q (p)

dp
= −b

If we are interested in the expression d ln q(p)
d ln p

, we can start from d ln q(p)
dp

and use that

d ln p = 1
p
dp. Thus, dividing each side of d ln q(p)

dp
by 1

p
:

d ln q (p)
dp
p

= − b
1
p

⇒ d ln q (p)
dp
p

=
d ln q (p)

d ln p
= −pb,

thereby implying that the price elasticity of demand is pb.

Another example is when we only have the value of dq(p)
dp

, but we want to obtain

13
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dlnq(p)
dp

.3 For instance, suppose the following demand:

q (p) := A− bp,

from which we can easily obtain that dq(p)
dp

= −b. There are two ways to get an expression

for d ln q(p)
dp

. One is applying logs to the original function and then taking the derivative.

Another is by exploiting that dq(p)
dp

= −b, so that

d ln q (p)

dp
=

dq(p)
q(p)

dp
=

dq (p)

dp

1

q (p)
= − b

q (p)
= − b

A− bp
.

Notice that we can also play this strategy to obtain an expression for dq(p)
d ln p

:

dq (p)

d ln p
=

dq (p)
dp
p

= p
dq (p)

dp
= −bp.

3Notice that the technique used here is also useful to obtain an elasticity when we have a term like
dx(p)
d ln p .
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2.1 Introduction

In this set of notes, we cover the basics that economists use to model the behavior of

consumers. More complex models of demand use the concepts we are about to present

in one or another way.

By a consumer, we mean a person who buys different goods at some fixed market

prices and under some monetary restriction (income). A consumer is described by two

elements: her preferences and her income constraint. The former is captured by means of

a utility function, while the latter by a budget constraint. Each of them will be formally

described in these notes.

Since you probably have seen some of the concepts, I will be focusing on how to

describe the concepts formally (i.e. mathematically). In particular, rather than an

exhaustive review, I concentrate on the techniques we’ll use in the course. Once we

grasp a thorough understanding of the basics, in the next lecture note we will move to

the consumer optimization problem.

2.2 The Utility Function

Let’s start by defining some basic concepts and assumptions. To keep matters simple,

we will deal with an agent in an economy with 2 goods.

A consumption bundle for the consumer is denoted by x := (x1, x2). This is also

referred to as a consumption basket. We assume that each good i is perfectly divisible

and can be consumed in zero or positive quantities. This is formalized by xi ∈ Xi, where

Xi is the domain of consumption of good i and we assume that Xi := R+ for each

i = 1, 2. Thus, each consumption bundle belongs to the space X := X1 × X2. In the

literature, X is referred to as the consumption space, and describes the set of feasible

bundles. Depending on the context, we could define a consumption space different from

R2
+. For instance, for some utility functions, we do not allow for zero quantities and

hence suppose that X = R2
++.
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To capture how a consumer assesses the different bundles and makes consumption

choices, the theory starts by defining a preference relation ≿. This is a primitive of the

model (i.e an element belonging to the model setup), and mathematically is an order

relation. Given two bundles x′′,x′ ∈ X, the preference relation tells us if the consumer

weakly prefers x′′ (denoted by x′′ ≿ x′), weakly prefers x′ (denoted by x′ ≿ x′′), or is

indifferent between both (denoted by x′′ ∼ x′, which means that simultaneously x′′ ≿ x′

and x′ ≿ x′′).

In general, working with preference relations is not our first choice to analyze a

consumer problem. Rather, we use concepts that turn the problem more tractable.

Under some conditions, the order of bundles described by ≿ is the same it could be

established through a utility function, U : X → R. This function takes a consumption

bundle x ∈ X as an input and returns a value U (x) ∈ R as an output. The number

U (x) describes the satisfaction the consumer gets from consuming a basket x, and can

be used to order all the bundles. Consequently, the utility function U conveys exactly

the same information as the preference relation ≿.

Formally, given two bundles x′′, x′ ∈ X, we define the utility as a U such that:

x′′ ≿ x′ iff U (x′′) ≥ U (x′). (2.1)

2.2.1 Ordinality of the Utility Function

We have said that the utility function is U : X1×X2 → R. Notice that we are assuming

that the co-domain of U is R, thus allowing for negative numbers. But what is the

interpretation? How is it possible that a consumer gets negative utility from consuming

nonnegative quantities of each good? The answer is simple: it does not matter. The

only relevant aspect of a utility function is to allow for comparisons between bundles

and determine which one she prefers, as in (2.1). Put it differently, the specific number

attached to the utility function has no meaning, as long as it describes the same ranking

(i.e. preferences) between the bundles. In formal terms, it is said that the utility function

is ordinal , rather than cardinal.
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From (2.1) we can also infer that only inequalities are relevant to rank the bundles.

Statements like “the consumer gets twice the utility from the bundle x′′ relative to x′

” are not necessary for describing the consumer’s preferences. This is quite fortunate,

since utility is quite an abstract concept and hardly measurable.

This fact has specific implications regarding utility functions. One of the most im-

portant is that the utility function is not uniquely defined. Any strictly increasing

transformation of U changes the scale in which utility is measured, but preserves the

same order of bundles given by 2.1. Since having the same order of baskets satisfies the

definition of a utility function given by 2.1, any monotone transformation defines a new

utility function for the consumer. This is why any particular utility function should be

actually referred to as a consumer’s utility function, rather than the consumer’s utility

function.

Formally, let g be a strictly increasing positive function, which means that g′ > 0.

Defining V (x) := g [U (x)], if U (x′′) ≥ U (x′) then it is necessarily true that V (x′′) ≥

V (x′). This follows because g is strictly increasing and so g [U (x′′)] ≥ g [U (x′)] .

Examples of monotone transformations are V (x) := U (x) + a where a is a constant

(positive or negative), and V (x) = bU (x) where b > 0. In the first example, we can see

more clearly why the utility function could be negative and yet make sense. If a < 0, V

might be negative, but the only thing that matters is whether V (x′′) ≥ V (x′), which is

all that matters in the end—defining a utility V with a < 0 would not affect the ranking.

But, then, someone might ask: which one is the “original” utility function? is it U

or V ? The question is misdirected, since there is no such a thing as a primitive utility

function. U , V , or any other monotone transformation represents a utility function for

the consumer. It is like asking if Bruce Wayne is the Batman or the Batman is Bruce

Wayne—both are the same person, there is no such a thing as the “original” person.
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2.3 The Cobb Douglas

Before delving into several axioms that a consumer could satisfy, we introduce the most

common functional form used in the literature: the Cobb Douglas utility function. This

will help us illustrate some properties of utility functions, since the Cobb Douglas satisfies

all of them.

The Cobb Douglas is defined by

U (x1, x2) := (x1)
α1 (x2)

α2 ,

where α1, α2 > 0. The domain is usually X := R++
2 to avoid some issues when we apply

a log monotone transformation (recall that logs are not defined for zero values). Later

in the course, we show this is not an issue at all, since the bundle (0, 0) (or any bundle

were one good is not consumed) is never an optimal choice for the consumer under this

utility function.

When researchers work with the Cobb Douglas, they do not always use the form

U (x1, x2) := (x1)
α1 (x2)

α2 . Rather, they specify the utility function with the logarithmic

transformation. The logarithm function represents a monotone transformation due to

the following. Since g (U) := lnU implies that g′ (U) = 1
U
, and (x1)

α1 (x2)
α2 > 0 for any

x1, x2 > 0, then U > 0 and so g′ (U) > 0. Then, we know that the utility represents the

same preferences.

Specifically, applying logs to U we obtain

Ũ (x1, x2) := α1 lnx1 + α2 lnx2.

Notice that the logarithm function is only defined for positive values. This is why we

have assumed x1, x2 > 0, so that zero quantities of any good are not part of the domain.

Remember two properties of the logarithmic function:

� ln (x1x2) = ln (x1) + ln (x2)

� ln (xα) =α ln x

Researchers go even further and work with the case in which α1 + α2 = 1, thereby
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defining the utility function by Ũ (x1, x2) := α lnx1 + (1− α) lnx2 with α ∈ (0, 1). This

is possible because we can apply an additional monotone transformation to the logs by

dividing Ũ by 1
α1+α2

. Thus, the coefficients of the new utility function become α1

α1+α2
and

α2

α1+α2
, whose sum equals one. By calling α := α1

α1+α2
and noticing that 1− α = α2

α1+α2
, it

is common to define the Cobb Douglas utility function as

Ũ (x1, x2) := α lnx1 + (1− α) lnx2,

where α > 0 and X1 ×X2 := R++
2.

2.4 Axioms

We present different axioms that a consumer can satisfy. Axioms are properties taken

as true within the model, which describe the decision process of consumers.

We break down the axioms into two. First, we present those axioms that a consumer

endowed with a utility function always satisfies: completeness and transitivity. These

two properties define what we understand by a rational consumer.

Then, we proceed to define three axioms that not all the utility functions satisfy.

They are differentiability, strong monotonicity, and strict convexity.

2.4.1 The Definition of Rationality

We present the axioms of completeness and transitivity. They just follow by the definition

of a function and the fact that the function takes values belonging to the real numbers.

When the choices of a consumer can be described through a utility function, these

two properties are always satisfied. They define what we understand as rationality in

consumer theory.

1. Completeness This property means that the consumer can compare any two

bundles and say which one she prefers. Given a bundle x ∈ X, the consumer can

always assign a value U (x) to the satisfaction she derives from it. This just follows by

the mere definition of a function: any element of the domain x ∈ X has a value U (x)
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attached. Consequently, the consumer can always say which bundle she prefers between

two options. Formally, for any two bundles x′ and x′′, it is always true that she prefers

one of them (either U (x′) > U (x′′), U (x′) < U (x′′)) or she is indifferent between both

(that is, U (x′) = U (x′′)). In other terms, if you ask the consumer if she prefers x′ and

x′′, she will never answer that she is not sure.

2. Transitivity This is the distinctive feature of the utility function, and justifies that

we can use describe a consumer as rational. Mathematically, it states that if U (x′′′) >

U (x′′) and U
(
x′′) > U (x′), then it is necessarily true that U (x′′′) > U (x′). This

property just follows by property of the real numbers (recall that the utility function is

real-valued since it has a co-domain R). To see this, define the utility values c := U (x′′′),

b := U (x′′) and a := U (x′). Since they are numbers, it is always true that if c > b and

b > a, then c > a. Some people consider this axiom a strong assumption. In a lot

of circumstances, people could make decisions that violate transitivity. Using the same

notation, it could happen that the consumer sometimes prefers x′′′ and prefers x′ in a

different context, even when she claims that c > a. Violations of transitivity have shown

up in different lab experiments. However, as a first approximation to consumer theory,

transitivity is a reasonable behavioral postulate.

2.5 Other Consumer Axioms

There are other properties that can be defined, in addition to completeness and transi-

tivity. Unlike these two properties, the ones we will present might or not be satisfied by

a specific utility function.

3. Differentiability This assumption allows us to use the tools of differential calculus.

It is immediate to note that the Cobb Douglas is differentiable, since it is the product of

two power functions. However, as we will see in the course, there are several standard

utility functions that are not differentiable.

When differentiability holds, we can define the concept of marginal utility of good

i, given by ∂U(x1,x2)
∂xi

. This provides information on how infinitesimal increases in the
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consumption of good i impact the utility function.

Remark
Remember how you should interpret a derivative. Let’s take ∂U(x1,x2)

∂x1

to illustrate this. Since it is a partial derivative, you are assuming that x2 remains

fixed. Thus, the term indicates how U varies when x1 varies infinitesimally, but

expressed in terms of a unitary change of x1. Put it differently, if ∂U(x1,x2)
∂x1

= 2, we

let x1 vary in a small amount, but express the result as if x1 had increased in one

unit. In that case, the variation in utility would be 2.

4. Strong Monotonicity It means that greater consumption of any good in-

creases utility. The property implies what is known as non-satiation: given a specific

bundle x′, it is always possible to find another bundle x′′ that gives more utility. With

strong monotonicity we are ruling out cases where a good could become a “bad” if it is

consumed in excess.

When the utility function is differentiable, we can define strong monotonicity by

the existence of a positive marginal utility for each good. Formally, ∂U(x1,x2)
∂x1

> 0 and

∂U(x1,x2)
∂x2

> 0 for any x1, x2 ∈ X1 ×X2. This indicates that when more quantity of each

good is consumed, the consumer’s utility is higher.

For example, the marginal utility of good 1 in the Cobb-Douglas case is

∂U

∂x1

= α1 (x1)
α1−1 (x2)

α2 > 0,

where the sign is positive since α1 > 0. By the same token, ∂U
∂x2

= α2 (x1)
α1 (x2)

α2−1 > 0

when α2 > 0.

5. Strict Convexity of ≿ (Strict Quasiconvaty of U) This axiom is a necessary

condition for the consumer to prefer diversifying consumption. A diversified

basket has a little bit of every good, rather than a lot of some goods and none of others.

Showing how strict convexity of preferences is reflected in the utility function

requires a little bit more work, since we first need to introduce some preliminary concepts.

First, we need to define indifference curves: all the combinations of x1 and x2 that

provide the same level of utility U0, where U0 is some fixed number. Since U0 can

take different values, this allows us to define the indifference map, which is the set of
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indifference curves. This is shown in Figure IC.

Figure 2.1. Example of Indifference Curve

x2(x1)

x1

Map of Indifference
Curves

Direction in which
utility increases

You have probably seen the concept of an indifference curve before and analyzed it

graphically. However, how can we characterize the indifference curves algebraically? To

do this, fix a level of utility at U0. The combinations of x1 and x2 that give the utility

U0 are by definition U0 = U (x1, x2). From this, we can establish a function x2 (x1) that

tells us, for a feasible quantity x1, what is the quantity x2 such that the consumption of

the bundle (x1, x2 (x1)) provides a utility U0.

In the case of a Cobb Douglas, we know that U0 = (x1)
α1 (x2)

α2 for a given level of

utility U0. Working out the equation, we obtain that

x2 (x1) = (U0)
1
α2 (x1)

−α1
α2 .

If we drew that function for different values of U0, we would obtain a similar graph to

Figure IC.

To characterize indifference curves when we have a general utility function, we proceed

by characterizing the slope (first derivative) and the curvature (second derivative) of the

function x2 (x1). To do this, we proceed by totally differentiating U0 = U [x1, x2 (x1)] for

a fixed value of U0. In this way, we allow for changes in x1 and x2 under the restriction

that U0 does not vary.
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For the analysis, assume that strong monotoniticy holds, so that each marginal utility

is positive. The differential is:

dU0︸︷︷︸
=0

= U ′
x1

+ U ′
x2

dx2 (x1)

dx1

,

⇒ dx2 (x1)

dx1

= −U ′
x1
[x1, x2 (x1)]

U ′
x2
[x1, x2 (x1)]

< 0.

From this, we can see that every time a consumer satisfies strong monotonicity,

then dx2(x1)
dx1

, which is the slope of the indifference curve, is negative. The slope of the

indifference curve is also known as the marginal rate of substitution (MRS). The

MRS provides an answer to the following question: starting from a point (x1, x2 (x1)), if

we increase the consumption of good 1 in one unit, in which amount the good 2 has to

vary in order to keep the utility level at the same level?

The negative slope indicates that there is a trade-off. By strong monotonicity, a

greater consumption of any good increases the utility. By this reason, the consumer

would get more utility if x1 increases, and so x2 necessarily has to decrease to restore the

level of utility to U0. This is in fact why the slope is called marginal rate of substitution:

it provides information about how much the consumer is willing to give up of one good,

to obtain one more unit of the other good.

For the case of the Cobb Douglas, we already know that x2 (x1) = (U0)
1
α2 (x1)

−α1
α2 , so

that the MRS follows by just taking the derivative with respect to x1:

dx2 (x1)

dx1

= −α1

α2

(U0)
1
α2 (x1)

−α1
α2

−1
< 0.

Once we have defined indifference curves and the MRS, let’s come back to what

was our original interest: the concept of strict convexity of preferences (SCP). So far,

we have only shown that, when preferences are strongly monotone, the MRS is nega-

tive. But indifference curves with a negative slope are consistent with any of the three

shapes described in Figure 2.2. Depending on the sign of the MRS’s slope (i.e. the

second derivative of the indifference curve), we can have the three possible shapes of the

indifference curve shown in Figure 2.2.
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Figure 2.2. Possible Types of Indifference Curves when Slope is Negative

(a) Linear

x2(x1)

x1

Indifference
Curve

(b) Convex

x2(x1)

x1

Indifference
Curve

(c) Concave

x2(x1)

x1

Indifference
Curve

SCP represents the case where the MRS has a positive slope. Thus, SCP means that

the agent has strictly convex indifference curves. This corresponds to the Subfigure 2.3b.

Formally,

strictly convex preferences:
d2x2 (x1)

dx2
1

> 0.

For instance, in the case of the Cobb Douglas, we can take the derivative of dx2(x1)
dx1

with

respect to x1 and obtain

d2x2 (x1)

dx2
1

=

(
α1

α2

+ 1

)
α1

α2

(U0)
1
α2 (x1)

−α1
α2

−2
> 0.

What is the implication of strictly convex indifference curves in terms of the utility

function? The following can be proven.

Result 2.1 The agent has strictly convex indifference curves iff the utility function

is strictly quasiconcave.

We have illustrated in previous classes that quasiconcavity can be proven in different

ways. One way is through the sign of the Hessian matrix, but this is not the only way.

In fact, directly showing that the indifference curves are strictly convex, as we did for

the Cobb Douglas, is sometimes easier.
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2.5.1 Interpretation of Strictly Convex Preferences (OPTIONAL)

You have probably seen in previous courses why strict convexity of the indifference curves

entails that the consumer diversifies consumption. Here, I briefly review this property,

just in case you do not remember it.

Suppose an indifference curve with utility U0 and two bundles that belong to that

curve. Let’s refer to these bundles by x′ := (x′
1, x

′
2) and x′′ := (x′′

1, x
′′
2). Now suppose we

construct a third bundle x′′′, which is a linear combination of those bundles. Specifically,

let x′′′
1 := αx′

1+(1− α)x′′
1 and x′′′

2 := αx′
2+(1− α)x′′

2, where α ∈ (0, 1).1 Since α ∈ (0, 1),

the bundle x′′′ represents a basket with intermediate consumptions of x′ and x′′.

For instance, consider x′ := (2, 1) and x′′ := (1, 2), and suppose these bundles provide

the same utility U0. The basket x
′′′ would be then x′′′ = (1 + α, 2− α), and so x′′′

1 , x
′′′
2 ∈

(1, 2). SCP means that the basket (x′′′
1 , x

′′′
2 ) for any α ∈ (0, 1) will provide more utility

than U0, so that it is preferred to (x′
1, x

′
2) and (x′′

1, x
′′
2). Graphically, this can be seen in

Figure 2.3.

Figure 2.3. Strictly Convex Indifference Curves

(a) Two Points

x2(x1)

x1
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x′
1

x′
2

x′′
1

x′′
2

(b) Convex Combination

x2(x1)

x1

Indifference
Curve

U0

x′
1

x′
2

x′′
1

x′′
2

x′′′
1

x′′′
2

Let’s provide some intuition through the graph, and then see the economics behind

it. In Figure 2.3, we are assuming one specifically α to represent (x′′′
1 , x

′′′
2 ). By choosing

1Notice that, in fact, x′′′
2 := x2 (x

′′′
1 ).
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a different α ∈ (0, 1), we can obtain any bundle along the dashed line. Thus, the dashed

line represents all the possible bundle x′′′ we can think of. Since the dashed line is above

the indifference curve of U0, any conceivable bundle x′′′ provides more utility than x′ or

x′′.

To get some intuition for this result, consider the following example. Let good 1 be

water (or any type of beverage), while good 2 is food. Suppose an extreme situation

where the consumer is considering bundles where she only consumers one good. These

bundles are represented by (x′
1, 0) and (0, x′′

2), where x′
1, x

′′
2 > 0. Now consider a basket

x′′′ := (αx′
1, (1− α)x′′

2) with α ∈ (0, 1). The basket x′′′ captures the situation where she

consumes strictly positive quantities of each good. Then, no matter what the values of

x′
1 and x′′

2 are, an the agent that has SCP will prefer to consume the basket x′′′ for any

α ∈ (0, 1). This means that an agent having SCP derives more utility from diversifying

consumption, than from consuming bundles with extreme quantities.

2.6 Budget Constraint

For our purposes, the description of the different elements involved in Consumer Theory

has as a final goal to determine what a consumer chooses in the market. So far, we

have described the utility function. If the consumer is not constrained (and she satisfies

strong monotonicity), the solution would be trivial: she would always like to consume

as much as she can of each good.

However, consumers are always constrained, either by the time or income at their

disposal. In consumer theory, we consider the case where each consumer has an income

constraint (or, more generally, a wealth constraint). Thus, a consumer has to decide her

consumption, knowing that her total expenditure cannot be greater than her income.

Although, to some extend, income is endogenously determined by each agent through

her labor choices, Consumer Theory proceeds in a simple way by assuming that income

is exogenous. Given two goods with a vector of prices (p1, p2) and income Y , the budget
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constraint is defined by

Y︸︷︷︸
income

≥ p1x1 + p2x2︸ ︷︷ ︸
expenditure

. (2.2)

The budget set defines all the possible combinations (x1, x2) that the consumer can

afford given her income Y . Likewise, we refer to the budget line as the combinations

(x1, x2) when (2.2) holds with equality, which it describes the bundles that exhaust the

consumer’s income. We can represent these elements as in Figure 2.4.

Figure 2.4. Budget Constraint

x2(x1)

x1

Slope = −p1

p2

x2 ≤ Y
p2

− p1

p2
x1x2 = Y

p2
− p1

p2
x1

Y
p2

Y
p1

Budget
Line

Budget
Constraint

The relevance of the budget line arises since we will assume consumers that always

satisfy strong monotonicity for at least one good. Thus, the consumer will always spend

all her income, and she will choose a basket among those along the budget line.

The slope of the budget line indicates the objective rate at which the market allows

her to substitute goods. To determine the slope of the budget line, we consider the case

of two goods. The budget line is Y = p1x1+p2x2 and determines a relation x2 (x1). This

relation provides the maximum amount of good 2 that the consumer can afford given

her income, given some consumption for good 1. Formally,

x2 (x1) :=
Y

p2
− p1

p2
x1,
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and so the slope is

dx2 (x1)

dx1

= −p1
p2
.

The term Y
p2

is the value when x1 = 0. Thus, it represents the maximum possible amount

of good 2 that the consumer can afford.

By the same token, we could have determined the budget line as x1 (x2). In this case, the slope would be −p2
p1

. In

addition, Y
p1

would the maximum possible quantity of good 1.

There is another way to find out the slope of the budget line. This is more similar to the approach we have

used for the derivation of the MRS. It consists in totally differentiating the expression with income fixed, so that

dY︸︷︷︸
=0

= p1dx1 + p2
dx2(x1)

dx1
. Thus,

dx2(x1)
dx1

= − p1
p2

.

The slope of the budget constraint indicates how much quantity of the good 2 the

consumer has to stop consuming if she wants to get one more unit of good 1. The fact

that this is equal to −p1
p2

reflects two aspects. First, that to buy one more unit of good

1 the consumer needs to get enough money to afford its price p1 (numerator). Second,

that for each unit of good 2 not consumed, the consumer has an additional amount p2

of money available (denominator).

2.6.1 Taxes in the Budget Constraint

Throughout the course, we will study how taxes impact a consumer’s decisions as an

application. Next, we show how three typical types of taxes are reflected in the budget

constraint.

1. Income Tax Income taxes are usually set as a percentage over total income. Specif-

ically, suppose that the government establishes that the agent has to pay a fraction

τ ∈ (0, 1) over the total income she earns. For instance, if the taxes are 15% of the total

income, then τ = 0.15. The budget constraint requires that we express this income in

terms of disposable income. Thus,

Y (1− τ) = p1x1 + p2x2.
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2. Value-Added Tax This type of tax is also known as ad-valorem tax. It comprises

those taxes applied to the consumption of goods with a tax base given by prices (i.e.

value). More specifically, every time a consumer buys a unit of the good, she has to pay

an additional fraction τ over the value of the product. One typical example of this tax

is the 5% of GST we pay in Edmonton for each product we consume.

In terms of the budget constraint, we can understand how they are incorporated

in two different ways. Suppose a value-added tax on good 1. For each unit of good

consumed, you have to pay an additional fraction τ out of the total value. Hence, the

consumer pays a total of p1 (1 + τ) for each unit consumed. Equivalently, we can think

that, out of the total purchase, the consumer has to pay an additional τ for the total

value. Thus, the expenditure of the consumer when she spends p1x1 is p1x1 (1 + τ).

Whatever the interpretation we use, the budget line becomes:

Y = (1 + τ) p1x1 + p2x2.

3. Tax per Unit Sold It is also a tax applied to the consumption of goods, but with

the tax base given by quantities. Thus, instead of adding a fraction of the value to

the total payment, the consumer pays for each unit consumed. This is captured by an

additional expenditure of τ monetary units, such that the consumer pays p1+ τ for each

unit consumed. Formally, the budget constraint becomes

Y = (p1 + τ)x1 + p2x2.
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2.7 Exercises

[1] Suppose a utility function U (x1, x2) := ln (x1) + x2, where x1 > 0 and x2 ≥ 0.

(a) Is U strongly monotone in each good? What does strongly monotonicity

mean?

(b) Starting from an indifference curve with utility U0, find an expression for

x2 (x1).

(c) Determine the slope of the indifference curve and its sign.

(d) Does U represent strictly convex preferences? What does this property imply

for the analysis?

[2] Repeat the exercise 1) for the following utility function:

(a) U (x1, x2) := x1 + x2

(b) U (x1, x2) := (x1)
2 + x2

Some Answer Keys: 1) strictly convex preferences, 2a) convex preferences 2b) not

convex (in fact, strictly concave preferences)
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3.1 Introduction

In Lecture Note 1, we covered a consumer’s preferences and the concept of budget con-

straint. This had the goal of preparing the ground to analyze consumer’s choices.

In this set of notes, we will study two optimization problems. The first one is the

so-called utility maximization problem: choosing a consumption basket that maximizes

utility subject to a budget constraint. This gives rise to the Marshallian demands.

After this, we study the expenditure minimization problem. This refers to the quan-

tity demanded that minimizes the expenditure to get a specific level of utility. From this

problem, we determine the Hicksian demands. The analysis of this case is more abstract,

but it has an intimate relation with the utility maximization problem. In this sense, its

main aim is to understand the maximization problem in more detail.

We restrict the analysis to the case of two goods. Also, throughout the analysis, we

consider a utility function U that is well behaved. By a well-behaved utility function,

we mean that it satisfies all the five properties presented in the previous lecture. In

addition, we assume Inada conditions to rule out boundary solutions.

Definition 3.1: A well-behaved utility function U satisfies:

[1] Completeness.

[2] Transitivity.

[3] Differentiability (i.e., U ∈ C2).

[4] Strong monotonicity (i.e. positive marginal utilities for each good).

[5] Strict quasiconcavity (i.e. strictly convex preferences).

[6] Inada Conditions: lim
xi→0

U ′
xi
= ∞ for each good i.

Remember that completeness and transitivity are satisfied by any utility function.

So, strictly speaking, we are assuming differentiability, strong monotonicity strict quasi-

33



Mart́ın Alfaro Lecture Note 3. The Consumer’s Optimization Problems

concavity, and Inada conditions, relative to the axioms of the previous lecture note.

Inada conditions is a new property that we did not consider previously. Its goal is to

ensure that there are no boundary solutions. Notice we suppose that the Inada condition

holds for each good i. If it happens that it holds for, let’s say, good 1 but not for good 2,

we cannot rule out that there is a boundary solution in which good 2 is not consumed.

In other terms, the Inada condition for i only rules out that xi = 0 is not a solution.

Keep in mind that not all the utility functions are well-behaved. In fact, we will

consider several functional forms that are not in the next lecture note.

3.2 The Utility Maximization Problem (UMP)

The UMP is defined by:

max
(x1,x2)∈X1×X2

U (x1, x2) subject to Y = p1x1 + p2x2,

where Y is the consumer’s income, and p1 and p2 are the price of each good.1

The budget constraint holds with equality by the assumption of strong monotonicity.

It reflects that, since consuming more of each good makes the consumer better off, it

is never optimal to spend less than the total income. Thus, the consumer will always

choose a bundle along the budget line (i.e., a basket that exhausts all her income).

Intuitively, an optimal solution with Y < p1x1 + p2x2 could arise if goods become

a “bad” after a certain consumption threshold. In that case, it may be optimal not

spending all the income, since a basket along the budget line could actually make the

consumer worse off.

The first conclusion we can get from the UMP follows by simple inspection of the

income constraint: only relative prices matter for consumption choices. Thus, the con-

sumers’ decision would be the same if all prices increase an α%, since p1
p2

would not be

affected.2

1We can assume that each Xi is either R+ or R++. Since the utility function well behaved, zero
consumption of any good is not a solution.

2Formally, suppose that all prices increase an α%, such that the price of good i changes from pi to
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To see this, starting from Y = p1x1 + p2x2, we can divide both sides by p2 and

determine that

Y

p2
=

p1
p2
x1 + x2.

thereby showing that what matters is not p1 and p2, but
p1
p2
.

Although the result is mathematically simple, notice that it has deep implications in

terms of the consumer’s decision process. It says that the consumer has no monetary

illusion. To understand what this means, consider a situation where Canada decides to

change the name and denomination of its currency. Instead of Canadian dollars (CAD),

now the currency is called Maples and 1 CAD has the value of 3 Maples. No monetary

illusion means that consumers will not change their decisions by such a policy, since it

merely entails a change in all the prices (including income) of 300%. Thus, the budget

constraint in CAD would be multiplied by 3,

3Y = (3p1)x1 + (3p2)x2,

⇒ Y = p1x1 + p2x2,

but the budget constraint would remain the same.

An example of monetary illusion could be following an increment in salary that only

represents an inflation adjustment. This type of wage adjustment would actually make

the purchasing power of your salary be the same (i.e., the person can buy the same goods

with her new wage, given the annual increase in prices). Nonetheless, the person could

think she is richer, if she compares the nominal wage before and after the increment.

The UMP rules out cases like this.

3.2.1 General Solution

Given that we are dealing with a well-behaved utility function, it can be shown that the

solution to the UMP is interior and unique. Uniqueness follows by strict quasiconcavity,

pi (1 + α) . Then, the relative prices would not change, since they are given by p1(1+α)
p2(1+α) , which equals p1

p2
.

Only if prices change in different proportions, and so relative prices vary, is that the consumer would
change her consumption decisions.
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while Inada conditions rule out corner solutions (more specifically, a zero consumption

of any good). Furthermore, since the utility function is differentiable, we can make use

of the Lagrange technique to characterize the solution.

Remark
It is worth emphasizing that not all the functional forms satisfy differ-

entiability, strong monotonicity, strict quasiconcavity, and Inada type conditions, as

we are assuming. In case at least one of these properties does not hold, the solution

is not necessarily unique and interior. Moreover, we do not necessarily can charac-

terize its solution by using the Lagrange technique. Keep in mind this for the next

lecture notes, where we consider specific utility functions that do not satisfy all of

these properties.

The Lagrangian is:

L (x1, x2, λ;Y, p1, p2) := U (x1, x2) + λ [Y − p1x1 − p2x2] .

Remember that the Lagrangian is not only a function of x1 and x2, but also of the

artificial variable λ. Once we construct the Lagrangian, we proceed as in any other

optimization problem. Specifically, the FOCs are3:

FOC:


∂L (·)
∂x1

= ∂U(x1,x2)
∂x1

− λp1 = 0,

∂L (·)
∂x2

= ∂U(x1,x2)
∂x2

− λp2 = 0,

∂L (·)
∂λ

= Y − p1x1 − p2x2 = 0.

Through the FOCs, we obtain the solution to the UMP. This gives the opti-

mal endogenous variables (including λ), as functions of the parameters of the model:

x∗
1 (Y, p1, p2), x∗

2 (Y, p1, p2), and λ∗ (Y, p1, p2). The optimal demands of the UMP are

called Marshallian demands.

Furthermore, the solution allows us to obtain the optimal utility function. In the

optimization terminology, this is called the value function. In the context of consumer

theory, it is known as the indirect utility function, and is given by

U∗ (Y, p1, p2) := U [x∗
1 (Y, p1, p2) , x

∗
2 (Y, p1, p2)] .

3Notice that, since we are assuming that the utility function is strictly increasing (by strong mono-
tonicity) and strictly quasiconcave (by strict convexity of the preferences), there is no need to check the
second-order conditions to ensure that we are in fact maximizing.
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Remark
Keep in mind that U∗ and U are two different functions: U∗ is a function

of the parameters (Y, p1, p2), while U of (x1, x2).

3.2.2 Interpreting the Optimality Condition

The optimization problem can be graphically depicted in the following way. In Figure

3.1a, there is a given budget line. The optimization problem means finding a basket that

provides the highest utility possible. In Figure 3.1b, this is identified by drawing several

indifference curves, until we find the one that gives the highest utility possible among

those that satisfy the income constraint.

Figure 3.1. UMP

(a) Constraint

x2(x1)

x1

(b) Optimization Problem

x2(x1)

x1

U∗

x∗
1

x∗
2

How can we characterize the basket that provides the highest utility? Take the

equations ∂L (·)
∂x1

= 0 and ∂L (·)
∂x2

= 0, which indicate that U ′
x1

= λp1 and U ′
x2

= λp2.

Dividing both equations, the optimal demands satisfy the following condition:

U ′
x1

U ′
x2

=
p1
p2

(3.1)

or, equivalently, −U ′
x1

U ′
x2

= −p1
p2
. Thus, when equation (3.1) is evaluated at the optimal

basket, the slope of the indifference curve equals the slope of the budget line. In Figure
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3.2, we graphically demonstrate the point at which the optimal solution occurs.

Figure 3.2. Optimal Consumption

x2(x1)

x1

− U ′x1
(x∗1 ,x

∗
2)

U ′x2
(x∗1 ,x∗2)

= −p1

p2

U∗

x∗
1

x∗
2

In Lecture Note 1, we introduced one of the most common utility functions used in

the literature: the Cobb Douglas. Next, we use this case to illustrate the UMP.

Example

Remember that we can apply a monotone transformation to an utility function, and the

new function would still represent the same preferences. In Lecture Note 1, we have

shown that a Cobb Douglas utility function can be presented in its log form by

U (x1, x2) := xα1
1 xα2

2 .

where α1, α2 > 0 and α1 + α2 = 1. The optimization problem is then

max
x1,x2

U (x1, x2) = xα1
1 xα2

2 subject to Y = p1x1 + p2x2.

In Lecture Note 1, we have also shown that the Cobb Douglas function satisfies dif-

ferentiability, strong monotonicity, and strictly quasiconcavity. To show that it is a

well-behaved utility function, it rests to show that it also satisfies the Inada conditions

for each good:

lim
xi→0

U ′
xi
= ∞ for i = 1, 2.
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Consider good 1. Then,
∂U(x1,x2)

∂x1
:= α1 (x1)

α1−1. Thus, if x1 → 0, the denominator goes to zero, and hence the

whole expression goes to infinite. Thus, the Inada condition for good 1 is satisfied. The result for good 2 is identical.

When the utility function is well behaved, the solution is unique (by strict quasicon-

cavity) and interior (by Inada). So, we do not need to check the SOC. Moreover, the

Marshallian demands can be obtained by use of the Lagrange techniques, giving

x∗
1 (p1, Y ) = α1

Y

p1
and x∗

2 (p2, Y ) = α2
Y

p2
.

To find the optimal solution, we know that the solution is unique and interior. Moreover, the utility function is

differentiable and the consumer is constrained by her income. Thus, we can make use of the Lagrange technique.

The optimization problem can be solved in two steps. First, we construct the Lagrangian. Second, we take the

Lagrangian as the objective function and proceed to its optimization. This is done as if the optimization problem

were an unconstrained problem, but with the Lagrange multiplier as one more variable to optimize. Let’s do it.

We can optimize a function after applying a monotone transformation, since it would provide the same result. So

let’s use the log form of the Cobb Douglas. The Lagrangian is given by:

L := α1 ln (x1) + α2 ln (x2) + λ [Y − p1x1 − p2x2] .

Now, we proceed to optimize the function by choosing x1, x2 and λ as control variables. The FOCs are:

L ′
x1

= α1
x1

− λp1 = 0,

L ′
x2

= α2
x2

− λp2 = 0, and

L ′
λ = Y − p1x1 − p2x2 = 0.

An easy way to solve the system of equations and obtain the Marshallian demands is the following. First consider

the equations L ′
x1

= 0 and L ′
x2

= 0, and obtain a relation between x1 and x2. Then, plug the relation into the

budget constraint (that is, the equation L ′
λ = 0) to obtain the Marshallian demands.

Let’s see how this works. First, notice that the equations L ′
x1

= 0 and L ′
x2

= 0 can be expressed as α1
x1

= λp1 and

α2
x2

= λp2, respectively. Dividing both equations, we obtain an expression for x2 as a function of x1:
α1
x1
α2
x2

= λp1
λp2

⇒x2 = α2
α1

p1
p2

x1.

Plugging this expression into L ′
λ = 0:

Y − p1x1 − p2x2 = 0 ⇒Y − p1x1 − p2
(

α2
α1

p1
p2

x1

)
= 0

⇒ Y − p1x1 −
(

α2
α1

)
p1x1 = 0⇒ x∗

1 (p1, Y ) = α1
Y
p1

Once we identified the optimal demand of good 1, we can obtain x∗
2 by using that x2 = α2

α1

p1
p2

x1, so that

x∗
2 = α2

α1

p1
p2

x∗
1⇒ x2 = α2

α1

p1
p2

(
α1

Y
p1

)
⇒ x∗

2 (p2, Y ) = α2
Y
p2

.

With this solution, we can obtain the indirect utility:

U∗ (p1, p2, Y ) =
Y

P
, (3.2)

where P :=
(

p1
α1

)α1
(

p2
α2

)α2

.
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By definition of the indirect utility function, U∗ (p1, p2, Y ) := U
[
x∗
1 (p1, p2, Y ) , x∗

2 (p1, p2, Y )
]
.

For the case of the Cobb Douglas this is,

U∗ (p1, p2, Y ) =
[
x∗
1 (p1, Y )

]α1
[
x∗
2 (p2, Y )

]α2⇒U∗ (p1, p2, Y ) =
(
α1

Y
p1

)α1
(
α2

Y
p2

)α2

We reorder the terms in brackets, so that:

U∗ (p1, p2, Y ) =
(

α1
p1

Y
)α1

(
α2
p2

Y
)α2

⇒U∗ (p1, p2, Y ) =
(

α1
p1

)α1
(

α2
p2

)α2
Y α1+α2

and using that α1 + α2 = 1 and that
(

αi
pi

)αi
= (αi)

αi (pi)
−αi = 1(

pi
αi

)αi
, then

U∗ (p1, p2, Y ) =Y
P , where P :=

(
p1
α1

)α1
(

p2
α2

)α2
.

3.2.3 Some Results Using the Envelope Theorem

We will apply the Envelope Theorem to derive some results regarding the UMP. Remem-

ber that the Envelope Theorem is a result that concerns how variations in a parameter

affect the value function. In the UMP, this means how variations in either income or one

of the prices affect the indirect utility function. Furthermore, recall that the procedure

to apply the Envelope Theorem is as follows.

Procedure to apply the Envelope Theorem

Step 1. Construct the Lagrangian: L (·) := U (x1, x2) + λ [Y − p1x1 − p2x2]

Step 2. Take derivatives of the Lagrangian with respect to the parameter of

interest, without embedding the optimal solutions:

�
∂L (x1,x2,λ;Y,p1,p2)

∂Y
= λ

�
∂L (x1,x2,λ;Y,p1,p2)

∂p1
= −λx1

Step 3. Evaluate the derivatives at the optimal values to obtain ∂U∗(Y,p1,p2)
∂Y

and

∂U∗(Y,p1,p2)
∂p1

:

�
∂U∗(Y,p1,p2)

∂Y
= λ∗ (Y, p1, p2)

�
∂U∗(Y,p1,p2)

∂p1
= −λ∗ (Y, p1, p2)x

∗
1 (Y, p1, p2)

By analyzing how the parameters affect the indirect utility function, we can derive

two results.
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� Interpretation of the Lagrange multiplier: ∂U∗(Y,p1,p2)
∂Y

= λ∗ (Y, p1, p2) > 0

In consumer theory, the Lagrange multiplier indicates the marginal utility of income.

This means that λ∗ indicates the impact of one unit of income on the agent’s optimal

utility. It can be shown that λ∗ > 0, so that λ∗ provides the intuitive result that the

higher the income of the agent, the better off she is.

Remark
Notice that the Lagrange multiplier λ∗ is affected by monotone transfor-

mations. This can be clearly seen since λ∗ is obtained by ∂U∗(Y,p1,p2)
∂Y

. Consequently,

depending on which utility function we take as primitive, both U∗ and λ∗ vary. Of

course, the Marshallian demands are still the same, and hence independent of mono-

tone transformations.

� Roy’s Identity: ∂U∗

∂pi
= −λ∗ (p1, p2, Y )x∗

i (p1, p2, Y ) < 0 for any good i.

Since λ∗ > 0 and x∗
i > 0, increases in prices determine a lower maximum utility.4 Roy’s

identity is not so important on its own, but combined with the result for λ∗ indicates

that we can determine the Marshallian demand of any good i through knowledge of the

indirect utility function. Specifically,

x∗
i (p1, p2, Y ) = −∂U∗ (Y, p1, p2) /∂pi

∂U∗ (Y, p1, p2) /Y
.

The importance of the result is due to two reasons. First, it simplifies some calcula-

tions, by establishing a direct link with the expenditure minimization problem we study

below. Second, it will become relevant to compute welfare measures, as we will show in

subsequent lecture notes.

Example

Suppose an indirect utility function given by

U∗ (p1, p2, Y ) :=
Y√
p1p2

First, we can obtain the optimal Lagrange multiplier by using that equals ∂U∗

∂Y
, so

4Since we are assuming that utility functino is well-behaved, then the quantities demanded cannot
be zero. Otherwise, Roy’s identify would imply that x∗

i ≥ 0 and we should allow for the possibility that
∂U∗

∂pi
= 0.
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that λ∗ (p1, p2) := . 1√
p1p2

.

Then, we can obtain the Marshallian demands. For example, consider good

1. Then, since ∂U∗

∂p1
= −Y

2

√
1
p2
(p1)

− 3
2 and ∂U∗

∂Y
= 1√

p1p2
, then x∗

1 (p1, p2, Y ) =

Y
2

√
1
p2
(p1)

− 3
2

(
1√
p1p2

)−1

, which gives x∗
1 (p1, p2, Y ) = Y

2p1
after some simplifications.

Notice that this Marshallian demand is the same that we would obtain from a Cobb

Douglas when α1 := 0.5 =: α2. This arises because the indirect utility function is the

same as equation (3.2) with those parameter values.5

3.2.4 Comparative Statics

So far, we have characterized the optimal solution of the UMP and provided some rela-

tions through the use of the Envelope Theorem. Although those matters were interesting

on their own, we usually build a model to study a phenomenon. For this reason, we want

to establish predictions and/or refutable hypotheses that we can ultimately contrast with

the data.

One of the main tools to derive results of this type is through performing comparative

statics exercises. Given a model, as a characterization of how agents make decisions,

comparative statics entails the following: first shocking a parameter, and then obtaining

predictions regarding how the endogenous variables are affected by this. In terms of

consumer theory, this means that we either vary prices or income, and then analyze how

the consumption decisions are affected.

Originally, consumer theory was conceived to justify the uncompensated law of

demand : a negative relation between the price and consumption of a good. Nonethe-

less, it turned out that all the comparative statics of the UMP have an ambiguous

sign. Thus, variations in prices or income can increase or decrease the consumption of

goods.

5The only difference is a constant 1
2 , but this does not affect the result.
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Result 3.1 The comparative statics of the UMP provide the following results:

�

∂x∗
i (p1,p2,Y )

∂pj
⪌ 0 for i, j = 1, 2

�

∂x∗
i (p1,p2,Y )

∂Y
⪌ 0 for i = 1, 2.

Remark
I will not formally derive the results, since I do not want to dwell on

comparative statics’ techniques when we analyze consumer theory. I prefer to focus

on other aspects, relegating this technique to other topics that we will see later. If

you are interested in the formal derivation of these results, I have some written notes

that I can send to you.

3.2.5 A Glance at What We Will Do Later in the Course

We have said that changes in the own price of the good, in the prices of other goods or

income can have a positive, negative, or no effect on the Marshallian demands. This is

not very reassuring. However, it does not mean that the model is useless. We can still

use it to analyze why the results are ambiguous, and what channels have to dominate to

get a definite result.

I have not included the comparative static analysis, mainly because it is not really

insightful concerning why results are ambiguous. However, we will study an alternative

approach, which provides some answers on what the signs depend on. This is the so-

called Slutsky equation, which decomposes a change in prices into two decisions by the

consumer.

3.3 Expenditure Minimization Problem (EMP)

So far, we have studied the optimization problem of a consumer when she is endowed with

some income and faces some prices. Now, we are going to study a problem intimately

related: the EMP. The UMP is usually called the primal problem, while the EMP is
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referred to as the dual problem. We first state the EMP, and then explain its relation

with the UMP.

In the EMP, the consumer does not maximize utility. Rather, she has to decide the

consumption of each good that achieves a level utility U0, when prices are p1 and p2.

Formally, let E be the expenditure allocated. Then, the EMP is

min
x1,x2∈X1×X2

E = p1x1 + p2x2 subject to U0 = U (x1, x2).

We can understand the EMP as the “inverse” analysis of the UMP. To see this, recall

that one of the intuitions behind the UMP, outlined through Figure 3.1. Given a budget

line, the UMP consists in drawing the map of indifference curves until we find the one

that provides the greatest utility.

On the contrary, in the EMP, we fix an indifference curve and find the budget line

that minimizes the income to achieve a level of utility. In Figure 3.3, we illustrate this.

Given an indifference curve (Figure ??), then we draw several budget lines, until we find

the one that determines the lowest expenditure and provides utility U0 (Figure ??).

Figure 3.3. Expenditure Minimization Problem

(a) Constraint

x2(x1)

x1

(b) Optimization Problem

x2(x1)

x1

U∗

x∗
1

x∗
2
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3.3.1 General Solution

In case the utility is well-behaved, it can be shown that the EMP has a unique and

interior solution. Moreover, this can be characterized by the Lagrange technique. The

Lagrangian is given by

L (x1, x2, µ; p1, p2, U0) := p1x1 + p2x2 + µ [U0 − U (x1, x2)]

I have denoted the Lagrange multiplier by µ to emphasize that this is not the same

multiplier λ from the UMP.

The FOCs are given by:

FOCs:


∂L (·)
∂x1

= p1 − µ∂U(x1,x2)
∂x1

= 0,

∂L (·)
∂x2

= p2 − µ∂U(x1,x2)
∂x2

= 0,

∂L (·)
∂µ

= U0 − U (x1, x2) = 0.

Through these FOCs, we obtain solutions h∗
1 (p1, p2, U0), h∗

2 (p1, p2, U0), and

µ∗ (p1, p2, U0). The optimal demands of the expenditure minimization problem, h∗
1 and

h∗
2, are referred to as Hicksian demands.

Evaluating the expenditure at the optimal solutions, we also get the minimum

expenditure function:

E∗ (p1, p2, U0) :=E [h∗
1 (p1, p2, U0) , h

∗
2 (p1, p2, U0)] ,

=p1h
∗
1 (p1, p2, U0) + p2h

∗
2 (p1, p2, U0)

3.3.2 Interpreting the Optimality Conditions

The optimality condition of the EMP can be characterized through the FOCs. Remark-

ably, the EMP has the same tangent condition as the UMP. By using ∂L (·)
∂x1

= 0 and

∂L (·)
∂x2

= 0, we obtain U ′
x1

= µp1 and U ′
x2

= µp2. Dividing both expressions:

U ′
x1

U ′
x2

=
p1
p2
.
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Notice this does not imply that the Marshallian and Hicksian demands are equal. While

they both have the same tangent condition, they differ in the constraints they have,

which are given by ∂L (·)
∂µ

in the UMP and ∂L (·)
∂µ

= 0 in the EMP. Nonetheless, it reveals

that there is some relation between both. We explore this relation in the next section.

Example

We keep using the Cobb Douglas to illustrate how to solve the EMP. The optimization

problem is

min
x1,x2

E = p1x1 + p2x2 subject to U0 = xα1
1 xα2

2 ,

and the Hicksian demands for the case α1 + α2 = 1 are

h∗
1 (p1, p2, U0) = U0

(
α1

α2

p2
p1

)α2

and h∗
2 (p1, p2, U0) = U0

(
α2

α1

p1
p2

)α1

.

The Lagrangian is:

L := p1x1 + p2x2 + µ
[
U0 − xα1

1 xα2
2

]
and the FOCs are:

L ′
x1

= α1x
α1−1
1 xα2

2 − µp1 = 0

L ′
x2

= xα1
1 α2x

α2−1
2 − µp2 = 0

L ′
µ = U0 − xα1

1 xα2
2 = 0

Just like in the case of UMP, an easy way to solve the system of equations and obtain the optimal Hicksian demands

is to first consider L ′
x1

= 0 and L ′
x2

= 0 and obtain a relation between x1 and x2. Then we plug the relation into

the constraint (that is, the equation L ′
µ = 0) to obtain the solution.

From the two equations we obtain the same tangent condition as in the UMP, so that α1
α2

x2
x1

= p1
p2

.

From this, we obtain an expression for x2 as a function of x1: x2 = α2
α1

p1
p2

x1.

Plugging in this expression into L ′
µ = 0:

U0 − xα1
1 xα2

2 = 0⇒ U0 − xα1
1

(
α2
α1

p1
p2

x1

)α2
= 0

⇒ U0 − xα1+α2
1

(
α2
α1

p1
p2

)α2
= 0 which using that α1 + α2 = 1, then

h∗
1 (p1, p2, U0) = U0

(
α1
α2

p2
p1

)α2
.

Likewise, we use that x2 = α2
α1

p1
p2

x1 and so that h∗
2 (p1, p2, U0) =

(
α2
α1

p1
p2

)
h∗
1 (p1, p2, U0). This determines that

h∗
2 (p1, p2, U0) = U0

(
α2
α1

p1
p2

)α1
.

Likewise, the minimum expenditure is

E∗ (p1, p2, U0) = U0

(
p1
α1

)α1
(
p2
α2

)α2

= U0P
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By definition, E∗ (p1, p2, U0) = p1h∗
1 (p1, p2, U0) + p2h∗

2 (p1, p2, U0). Hence,

E∗ (p1, p2, U0) = p1U0

(
α1
α2

p2
p1

)α2
+ p2U0

(
α2
α1

p1
p2

)α1

⇒ E∗ (p1, p2, U0) = U0

[
p1
(

α1
α2

p2
p1

)α2
+ p2

(
α2
α1

p1
p2

)α1
]

⇒ E∗ (p1, p2, U0) = U0

[
(p1)

1−α2

(
α1
α2

)α2
(p2)

α2 + (p2)
1−α1

(
α2
α1

)α1
(p1)

α1

]
By using that α1 + α2 = 1, then α2 = 1− α1 and α1 = 1− α2. Therefore,

E∗ (p1, p2, U0) = U0

[
(p1)

α1

(
α1
α2

)α2
(p2)

α2 + (p2)
α2

(
α2
α1

)α1
(p1)

α1

]
⇒ E∗ (p1, p2, U0) = U0 (p1)

α1 (p2)
α2

[(
α1
α2

)α2
+
(

α2
α1

)α1
]

Finally, using that
(

α1
α2

)α2
+
(

α2
α1

)α1
=
(

α1
α2

)α2
+
(

α2
α1

)1−α2
we can reexpress the RHS(

α1
α2

)α2
+
(

α2
α1

)(
α1
α2

)α2
⇒

(
α1
α2

)α2
(
1 + α2

α1

)
⇒

(
α1
α2

)α2
(

α1+α2
α1

)
⇒ (α1)

α2−1 (α2)
−α2 which is just(

1
α1

)α1
(

1
α2

)α2
.

Thus, E∗ (p1, p2, U0) = U0 (p1)
α1 (p2)

α2

[(
α1
α2

)α2
+
(

α2
α1

)α1
]
becomes

E∗ (p1, p2, U0) = U0 (p1)
α1 (p2)

α2

(
1
α1

)α1
(

1
α2

)α2
which gives the result.

3.3.3 Some Results Using the Envelope Theorem

Just like we did with the indirect utility function, we can obtain some relations by

applying the Envelope Theorem to the minimum expenditure function.

� Interpretation of the Lagrange multiplier: ∂E∗(p1,p2,U0)
∂U0

= ∂L
∂pi

⌋
h∗
1,h

∗
2

=

µ∗ (p1, p2, U0)

As we might suspect, µ∗ > 0. This indicates that achieving a higher level of utility

requires increasing the minimum expenditure.

� Shephard’s Lemma: ∂E∗(p1,p2,U0)
∂pi

= ∂L
∂pi

⌋
h∗
1,h

∗
2

= h∗
i (p1, p2, U0)

Notice that this is similar to Roy’s identity, but with a subtle and important difference:

we can recover the Hicksian demand without the need to know the Lagrange multiplier.

3.3.4 Comparative Statics

Unlike the case of the UMP, comparative statics in the EMP have definite signs. I

summarize the results and relegate their explanations for when we analyze the Slutsky

equation in Lecture Note 4. The fact that we obtain definite signs makes it clear that the

Marshallian and Hicksian demands are different functions—keeping different parameters

fixed (Y vs U0) affects the results.
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Result 3.2 In the EMP, the comparative statics exercises provide the following

results:

�

∂h∗
i (p1,p2,U0)

∂pi
< 0 for i = 1, 2.

�

∂h∗
j (p1,p2,U0)

∂pi
> 0 for i = 1, 2 and j ̸= i.

�

∂h∗
i (p1,p2,U0)

∂U0
⪌ 0 for any i = 1, 2.

Remark
The result

∂h∗
j (p1,p2,Y )

∂pi
> 0 for i = 1, 2 and j ̸= i is only true for the case

of two goods, while
∂h∗

j (p1,p2,Y )

∂pi
⪌ 0 with more than two goods. Nonetheless, this will

not matter to us. The most important result that you should keep in mind is that an

increase of a good’s own price reduces the Hicksian demand.

3.4 Duality: Relations between UMP and EMP

What is the relation between both optimization problems? Suppose we start from a situ-

ation where a consumer makes choices when parameters are (p1, p2, Y ). This determines

a Marshallian x∗
i (p1, p2, Y ) for good i = 1, 2 and an indirect utility function U∗ (p1, p2, Y ).

Suppose now, that we solve the EMP for the particular case in which U0 = U∗ (p1, p2, Y ).

By the graphs we have shown, we could suspect that E (p1, p2, U0) = Y , given that the

UMP and the EMP have the same tangent condition. This is indeed the case. The

intuition is that if a consumer is maximizing utility, she will use the income she has effi-

ciently. Thus, the income Y is the minimum that a rational consumer needs to achieve

utility U∗ (p1, p2, Y ).

Although the intuition is easy to grasp, let’s show this formally. One way to prove a statement of the type “If A

then B” is by a technique called contradiction. This consists in assuming that A happens but B does not occur,

and then show that this leads us to a contradiction. If that is the case, then we conclude that if A happens, then B

necessarily happens too.

To keep the notation simple, let’s refer to U∗ (p1, p2, Y ) and E∗ (p1, p2, U∗) by U∗ and E∗ respectively Towards a

contradiction, let’s assume that U0 = U∗ but E∗ ̸= Y . The fact that E∗ ̸= Y requires analyzing two cases: E∗< Y

and E∗ > Y .

If E∗< Y then a consumer maximizing could increase her utility by spending E∗ to achieve U∗, and then spending

the rest of income given by Y − E∗ on some goods. Thus U∗ would not maximize utility when the income is Y ,
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which was how we defined U∗ in first place. Hence, a contradiction.

If E∗ > Y , then a consumer minimizing expenditure to achieve U∗ could have chosen the same bundle composed

of the Marshallian demands and would have spent Y . Thus, E∗ does not minimize expenditure when the utility to

achieve is U∗, which contradicts the definition of E∗.

All this means that if U0 = U∗ then E∗ = Y .

We have said that if U0 = U∗ (p1, p2, Y ) then E (p1, p2, U0) = Y . Once we know

this proposition holds, we can establish a relation between Marshallian and Hicksian

demands: x∗
i (p1, p2, Y ) = h∗

i [p1, p2, U
∗ (p1, p2, Y )] for i = 1, 2.

In fact, the relation also holds the other way round: if E (p1, p2, U0) = Y , then

U0 = U∗ (p1, p2, Y ). Hence, it is also true that xi [p1, p2, E (p1, p2, U0)] = h∗
i (p1, p2, U0).

We formalize this in the following.

Result 3.3 Relation between the UMP and EMP:

� if U0 = U∗ (p1, p2, Y ) then

– E∗ (p1, p2, U0) = Y

– x∗
i (p1, p2, Y ) = h∗

i [p1, p2, U
∗ (p1, p2, Y )] for i = 1, 2.

� if E∗ (p1, p2, U0) = Y then

– U0 = U∗ (p1, p2, Y )

– x∗
i [p1, p2, E (p1, p2, U0)] = h∗

i (p1, p2, U0).

A key implication of this result is that, once we solve one of the optimization problems

(UMP or EMP), we do not need to solve the other one. Specifically, we will say that we

use duality when we establish the solution of one of the problems through the result of

the other problem (see the example below).

Remark
The Marshallian and Hicksian demands have the same value at the

specific point where income is defined by the minimum expenditure, and at the specific

points where the level of utility is defined as the indirect utility. However, these

demands do not coincide for the rest of the values. It is only under some stringent

conditions under which both demands are the same at all points. We explore this in

the next subsection.
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Example

Next, we illustrate how to recover the solution of the EMP when we only have information

about the indirect utility function of the UMP. Suppose that the indirect utility function

is given by

U∗ (p1, p2, Y ) :=
Y√
p1p2

.

To obtain the minimum expenditure function, we use that that if U0 = U∗ (p1, p2, Y )

then E∗ (p1, p2, U0) = Y . Therefore, substituting in the indirect utility function, we

obtain that U0 =
E∗(p1,p2,U0)√

p1p2
, which determines that

E∗ (p1, p2, U0) = U0
√
p1p2.

Thus, we have recovered the minimum expenditure.

Using the indirect utility function, we can also apply Roy’s identity and recover the

Marshallian demands. For good 1, this is is given by x∗
1 (p1, p2, Y ) = Y

2p1
, and we can de-

termine the Hicksian demand by using duality. We know that x∗
1 [p1, p2, E

∗ (p1, p2, U0)] =

h∗
1 (p1, p2, U0), and so x∗

1 (p1, p2, Y ) = E∗(p1,p2,U0)
2p1

. Replacing for the minimum expenditure

we have obtained, this gives h∗
1 (p1, p2, U0) =

U0
√
p1p2

p1
, or simply h∗

1 (p1, p2, U0) = U0

√
p2
p1
.

Notice that, alternatively, once we have recovered the minimum expenditure, we

could have determined the Hicksian demands by using Shephard’s Lemma.

3.4.1 Conditions for Equivalence between Marshallian and

Hicksian Demands (OPTIONAL)

Even though in general h∗
1 ̸= x∗

1, under some specific conditions both demands are equal.

The conditions are quite stringent, but nonetheless they apply to one pervasive case: the

quasilinear utility function, which we explore later in the course.

I begin by presenting one result that is of some importance itself. It establishes that

Marshallian demands do not depend on income iff the Hicksian demands do not depend

on the utility level.
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Result 3.4 h∗
1 does not depend on U0 iff x∗

1 does not depend on Y .

We start from the relation between the primal and dual problem given by E [p1, p2, U∗ (p1, p2, Y )] = Y . Taking

derivatives wrt Y ,

∂E∗

∂U0

∂U∗

∂Y
= 1 (3.3)

This implies that µ∗ [p1, p2, U∗ (p1, p2, Y )]λ∗ (p1, p2, Y ) = 1.

Taking derivative of equation (3.3) wrt p1,

∂2E∗

∂U0∂p1

∂U∗

∂Y
+

∂E∗

∂U0

∂2U∗

∂Y ∂p1
= 0 (3.4)

First, keep in mind that ∂E∗
∂p1

= h∗
1 (p1, p2, U0) and so

∂2E∗

∂p1∂U0
=

∂h∗
1 (p1, p2, U0)

∂U0

Moreover, x∗
1 (p1, p2, Y ) = − ∂U∗(Y,p1,p2)/∂p1

∂U∗(Y,p1,p2)/Y
and so

∂x∗
1(p1,p2,Y )

∂Y
= −

∂2U∗
∂p1∂Y

∂U∗
∂Y

− ∂2U∗
∂p1∂Y

∂U∗
∂p1

[∂U∗/Y ]2
which determines

that

∂x∗
1 (p1, p2, Y )

∂Y
= −

∂2U∗

∂p1∂Y

∂U∗
∂Y

− ∂U∗
∂p1

[∂U∗/Y ]2

Now we have all the elements to provide a proof. Since we have a proposition that is and “if and only if”, we need

to prove two statements. First, that if h∗
1 does not depend on U0 then x∗

1 does not depend on Y . Second, if x∗
1 does

not depend on Y then h∗
1 does not depend on U0.

Regarding the first statement, This follows because if h∗
1 does not depend on U0 then ∂2E∗

∂p1∂U0
=

∂h∗
1(p1,p2,U0)

∂U0
= 0

which implies by equation (3.4) that
∂E∗

∂U0

∂2U∗

∂Y ∂p1
= 0

since ∂E∗
∂U0

= µ∗ ̸= 0, then ∂2U∗
∂Y ∂p1

= 0 and so
∂x∗

1(p1,p2,Y )

∂Y
= 0.

Concerning the second statement, if x∗
1 does not depend on Y then, since ∂U∗

∂Y
− ∂U∗

∂p1
> 0, then ∂2U∗

∂p1∂Y
= 0.

Therefore, by using equation (3.4),
∂2E∗

∂U0∂p1

∂U∗

∂Y
= 0

Since ∂U∗
∂Y

= λ∗ ̸= 0 then ∂2E∗
∂U0∂p1

= 0 which implies that
∂h∗

1(p1,p2,U0)

∂U0
= 0.

Notice that the result also establishes that Marshallian demands depend on income iff

the Hicksian demands depend on the utility level. By using this result, we can establish

the conditions under which both demands are identical.

Result 3.5 If h∗
1 does not depend on U0 or x∗

1 does not depend on Y , then h∗
1 = x∗

1.
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This statement follows almost trivially by the relation between primal and dual. We know that

x∗
1 [p1, p2, E∗ (p1, p2, U0)] = h∗

1 (p1, p2, U0) (remember that both are equal only at that point). But if x∗
1 does

not depend on Y so that h∗
1 does not depend on U0, then x∗

1 (p1, p2) = h∗
1 (p1, p2) for all (p1, p2).

As we indicated, the main application of this result will be for the quasilinear utility

function. We will show in the next lecture note that when income is high enough, the

Marshallian demand of one of the goods does not exhibit income effects. Consequently,

we do not have to solve the EMP if we want to obtain the Hicksian demand of good

1—it is going to be identical to the Marshallian demand.
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3.5 Exercises

[1] John is a student at University of Alberta. He spends half of his income on books

(good 1) and half on food (good 2). He does not consume any other good since he

studies all time, leaving him with no time for any other activity.

(a) A person A suggests that, given the information at our disposal, the utility

function of John could be represented by U (x1, x2) :=
√
x1x2. Explain why

someone has arrived at this conclusion.

(b) A person B says that A is wrong and argues that John’s utility function

should actually be represented by U (x1, x2) = 2 ln x1 + 2 lnx2. What would

you say about it?

(c) From now on, suppose that the utility function of John is the one given in a).

Solve John’s maximization problem and find his Marshallian demands.

(d) John’s mother is worried that his son is studying so much that he’s neglecting

his diet. For this reason, she decides to give him some money. Specifically,

she’ll give him enough money to increase his income in 1%. The mother

expects that John will completely devote that 1% of additional income to the

consumption of food. Can you predict if this will end up happening?

[2] Let’s continue with John, but now as a representative student in Canada. As in

the previous exercise, he has a utility function U (x1, x2) :=
√
x1x2, and now we set

specific values for the parameters: Y := 2000 CAD, and prices p1 = 2 and p2 = 1.

Alberta’s authorities are planning to build new roads. To finance the project, they

are studying the possibility of levying a tax on textbooks, which are exempt from

taxes. Given Canada’s number of students, they estimate that the project could

be financed by collecting 200 CAD per student. Consider the following situations.

(a) Suppose Alberta sets a tax of t CADs per book sold. This means that every

time a bookstore sells a book, the consumer has to pay p1 and the tax t.
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i. Write the budget constraint incorporating the tax.

ii. What has to be the value of t so that Alberta can collect 200 CAD per

student?

(b) Answer the questions in a), but now assuming that the tax is a τ% of each

book sold’s value. This means that every time a book is sold, the consumer

has to pay the price and a τ% more over the price (this is known as an ad

valorem or value-added tax, similar to the GST tax that we pay in Edmonton)

(c) Answer the question in a), but now assuming that the tax consists of a w%

of a student’s income.

(d) By construction, the three tax schemes provide the same tax revenue. Some-

one from Alberta’s government asks you which scheme you’d choose. What

would you recommend? (Hint: the key here is the criteria you’d use for the an-

swer. Think equal tax revenue does not mean that the consumer is indifferent

between the tax schemes).

[3] This exercise is just for you to practice how to use the Envelope Theorem and

duality. It’ll become important in the next problem sets.

Suppose that the indirect utility function of Mona is given by U∗ (p1, p2, Y ) :=

Y
p1+p2

. Determine:

(a) Mona’s Marshallian demands

(b) Mona’s minimum expenditure function

(c) Mona’s Hicksian demands

Some answer keys:

2a) τ = 0.5 CAD, 3b) τ = 25% c) τ = 10%

3a) x∗
1 (p1, p2, Y ) = Y

p1+p2
, 1b) E∗ (p1, p2, U0) = U0 (p1 + p2), 1c) h

∗
1 (p1, p2, U0) = U0
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4.1 Introduction

When we studied the UMP, our main conclusion comparative statics do not have un-

ambiguous results. In particular, the uncompensated law of demand, which states a

negative relation between the consumption of a good and its own price, does not nec-

essarily hold. The Slutsky equation provides some insight regarding why this is case,

by decomposing the effects of a price change into channels. Additionally, it will helps

us understand why the uncompensated law of demand does not hold, and under what

conditions it is satisfied.

Specifically, a variation of price triggers two changes: one on relative prices and

another on real income. The substitution effect corresponds to the change in relative

prices while the income effect to the change in real income. There are two ways to

define the substitution effect, depending on the experiment used to isolate the change in

relative prices.

On the one hand, we have the original derivation of Slutsky. Starting from the UMP,

this requires compensating the consumer with enough income, such that the optimal

bundle consumed before the variation in price is still affordable at the new prices. On

the other hand, we have the derivation by Hicks, which is based on the EMP. It consists

in compensating the consumer with enough income, such that the initial level of utility

is achievable at the new prices.

When the variation in price is infinitesimal, both definitions of substitution effect

provide the same result. But, for an arbitrary change in price (i.e. not necessarily small)

they may differ. We will respectively refer to each way to identify the substitution effect

as the Slutsky and Hicks compensations.

In this lecture note, we proceed as follows. First, we derive the Slutsky equation by

using duality. This derivation implicitly assumes a compensation à la Hicks. Then, we

provide some interpretations of the substitution effect by using the Slutsky and Hicks

compensations. In particular, we illustrate how each effect can be calculated through
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the Cobb-Douglas case.

4.2 Derivation of the Slutsky Equation

We provide a formal derivation of the Slutsky equation based on duality. Given a level

of utility U0 := U∗ (p1, p2, Y ), consider good 1 and a variation in its own price. Then,

the Slutsky equation is defined by:

∂x∗
1 (p1, p2, Y )

∂p1︸ ︷︷ ︸
total price effect

=
∂h∗

1 (p1, p2, U0)

∂p1︸ ︷︷ ︸
substitution effect (< 0)

− x∗
1 (p1, p2, Y )

∂x∗
1 (p1, p2, Y )

∂Y︸ ︷︷ ︸
income effect

(
⪌ 0
)

.

By duality, we know that when U0 = U∗ (p1, p2, Y ), then E (p1, p2, U0) = Y . In turn, this implies that for the good

1, h∗
1 (p1, p2, U0) = x∗

1 [p1, p2, E
∗ (p1, p2, U0)]. We use this relation between the Marshallian and Hicksian demands

to derive the Slutsky equation.

From the relation h∗
1 (p1, p2, U0) = x∗

1 [p1, p2, E (p1, p2, U0)], we take the derivative of each side with respect to p1:
∂h∗

1(p1,p2,U0)

∂p1
=

∂x∗
1(p1,p2,Y )

∂p1
+

∂x∗
1(p1,p2,Y )

∂Y
∂E(p1,p2,U0)

∂p1
.

By Shepard’s Lemma, we know that
∂E(p1,p2,U0)

∂p1
= h∗

1 (p1, p2, U0), and so
∂E(p1,p2,U0)

∂p1
= x∗

1 (p1, p2, Y ). This

results in the expression
∂h∗

1(p1,p2,U0)

∂p1
=

∂x∗
1(p1,p2,Y )

∂p1
+

∂x∗
1(p1,p2,Y )

∂Y
x∗
1 (p1, p2, Y ). Reordering the terms, we arrive

to the Slutsky equation:
∂x∗

1(p1,p2,Y )

∂p1
=

∂h∗
1(p1,p2,U0)

∂p1
− x∗

1 (p1, p2, Y )
∂x∗

1(p1,p2,Y )

∂Y
.

Actually, the Slutsky equation is more general, and even applies to variations in the

price of the other good:

∂x∗
1 (p1, p2, Y )

∂p2︸ ︷︷ ︸
total price effect

=
∂h∗

1 (p1, p2, U0)

∂p2︸ ︷︷ ︸
substitution effect (< 0)

− x∗
2 (p1, p2, Y )

∂x∗
2 (p1, p2, Y )

∂Y︸ ︷︷ ︸
income effect

(
⪌ 0
)

.

4.2.1 Intuition behind the Slutsky Equation

Suppose an initial situation with prices p′1 and p′2, and consider a new situation where

the price of the good 1 changes. Specifically, let prices in the new situation be p′′1 and p′′2

where p′′1 > p′1 and p′2 = p′′2. We denote the equilibrium values with superscripts ’ and ”

depending on the situation under consideration. Thus, U ′ and U ′′ are the indirect utility

functions obtained in each case, and x′
1 and x′′

1 are the Marshallian demands of good 1,

and x′
2 and x′′

2 the Marshallian demands of good 2.
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The Slutsky equation analyzes the total effect of a variation
∂x∗

1(p1,p2,Y )

∂p1
, noticing that

a change in price triggers changes in relative prices (substitution effect) and real income

(income effect).

To provide some intuition, let’s rewrite the budget constraint. Starting from Y =

p1x1 + p2x2 and dividing both sides by p1, we obtain that Y
p1

= x1 +
p2
p1
x2. Expressing

the budget constraint in this way, the optimization problem of the consumer has two

parameters
(

Y
p1
, p2
p1

)
, instead of three parameters (Y, p1, p2).

The parameter Y
p1

is the real income expressed in terms of good 1, i.e., the total

quantity that income Y can buy of good 1. Moreover, p2
p1

represents the relative price.

It indicates how many units of good 1 the consumer could buy when she does gives up

one unit of good 2 and spends that additional income (i.e., p2) on good 1.

When there is an increase in p1, there are two effects working simultaneously. On

the one hand, the relative prices p2
p1

change. Thus, if the consumer stops buying one unit

of good 1, now she can consume more of good 2, in comparison to what was happening

before the increase in p1. This is the substitution effect—when there is an increase in

p1, consuming more of good 2 becomes a more attractive option than before.

The other effect is given by the change in real income. An increase in p1 makes the

consumer poorer, since she can afford less amount of goods. Thus, the income effect

captures how the consumption of good 1 varies when her real income is lower.

It is important to distinguish between the meaning of “real income” and “real income

in terms of good 1.” We have provided an intuition about these terms by just rewriting

the budget constraint in terms of the former. But real income is the purchasing power

that the income has, and so it is expressed in terms of both good 1 and good 2. This

requires defining what is called a price index, which reflects the price of one basket of

goods that comprises both goods. In contrast, the real income in terms of good 1 is

given by Y
p1
, which is the real income exclusively in terms of how much good 1 income

can buy. However, both are related: if the real income in terms of good 1 changes, then

it is necessarily true that real income varies.
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Why is this distinction important? Because agents make consumption decisions ac-

cording to real income. Thus, the income effect incorporates the fact that after an

increase in p1, for a given quantity of good 1 consumed, the consumer can afford fewer

units of good 2. This is because the consumer has a lower disposable income, after she

has spent money on the now more expensive good 1. This is the reason why a variation

in Y
p1

also affects the quantity that the consumer can afford of good 2, even when p2 has

not changed.

4.3 Hicks’ Experiment

While we have provided an interpretation of what each effect comprises, we have not said

why specifically the substitution and income effects are given by the terms we stated.

Next, we do so.

To analyze how a consumer varies the quantities of good 1 when only relative prices

change, we need to isolate the change in real income. Put it differently, the substitution

effect is computed ceteris paribus the change in real income. To accomplish this, we can

conceive two experiments.

The first way is the one envisioned by Hicks. This was in fact the basis for our

derivation of the Slutsky equation. The intuition is the following. An increase in p1

reduces the consumer’s real income, and so the consumer can afford less of both goods.

This implies that she would end up with a lower utility. To isolate the pure change

in relative prices, Hicks conceived the experiment of compensating the consumer with

enough income to achieve the same level of utility she was having before the change in

prices. Thus, the substitution effect à la Hicks is given by the adjustment in the

consumption of good 1 in order to achieve the same level utility previous to the change

in relative prices. This explains why the substitution effect is captured by the term

∂h∗
1(p1,p2,U0)

∂p1
.

The income effect is obtained just as a residual: the difference between the total

change and the variation due to the substitution effect. But, why is this given specifically
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by x∗
1 (p1, p2, Y )

∂x∗
1(p1,p2,Y )

∂Y
?

To understand this, remember the notion of a derivative.
∂x∗

1(p1,p2,Y )

∂p1
entails a small

variation in p1 (i.e. infinitesimal), with its result expressed in terms of a unit variation of

p1. Put it different, we are expressing an infinitesimal variation as if the variation were

dp1 = 1. How does this impact real income? Since there is an increase in one unit of p1,

it is like if the agent had seen reduced his consumption in an amount x∗
1. Specifically,

dY = x∗
1 dp1 with dp1 = 1 provides the decrease in income the consumer faces. Thus,

we can provide an interpretation of each term in the following way:

−x∗
1 (p1, p2, Y )︸ ︷︷ ︸

=dY

∂x∗
1 (p1, p2, Y )

∂Y︸ ︷︷ ︸
effect per unit of income

.

4.4 Slutsky’s Experiment

The other way to derive the Slutsky equation is the one originally conceived by Slutsky.

Although we have not derived the Slutsky equation using that method, the Hicks and

Slutsky methods arrive at the same result when the variation in p1 is infinitesimal.

Slutsky isolates the substitution effect by compensating the consumer in a different

way than Hicks. Rather than giving the consumer enough money to stay at the same

level of utility, the monetary compensation is such that the consumer can afford the

original bundle. To see this more clearly, consider original prices (p′1, p
′
2) with an optimal

consumption (x′
1, x

′
2). Suppose now that the consumer faces prices (p′′1, p

′
2) with p′′1 > p′1.

Slutsky compensates the agent such that the original basket (x′
1, x

′
2) is affordable at the

new prices (p′′1, p
′
2).

1

Thus, the substitution effect à la Slusky is given by the adjustment in consump-

tion of good 1 when the consumer is compensated with enough money to afford the

original bundle. Just like with Hicks’ method, the income effect can be obtained as a

1Let’s denote the compensation as ∆Y and the total income once the agent is compensated by Y C .
To determine what each term is equal to, we know that p′1x

′
1 + p′2x

′
2 = Y . So now we need to give the

consumer Y C := p′′1x
′
1 + p′2x

′
2, determining that ∆Y := x′

1 (p
′′
1 − p′1).
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residual: the difference between the total change in consumption and the variation due

to the substitution effect.

I have emphasized that the Slutsky’s and Hicks’ compensations provide the same value of substitution effect for

infinitesimal variations in p1. On the contrary, substitution effects depend on the method used to compute them if

we do not consider small variations in p1. Why is this the case? Try to think about it in the following way. Suppose

good 1 represents hardcover books and good 2 digital books. Usually, physical books are more expensive than digital

ones.

Suppose that the price of hardcover books increase and the university offers you two deals. First, the university

could give you enough money to buy the same amount of physical and digital books that you were buying before

the change in prices. The second deal is that, whatever you end up buying in terms of physical and digital books,

the university gives you enough money to get the same utility as you were having before the increase in p1. What

would you choose?

With the second alternative, you won’t be either worse off or better off, irrespective of your choice. By definition,

you will stay in the same indifference curve. On the other hand, the first alternative allows for some scope to exploit

the type of compensation. For instance, rather than buying the same original bundle that you were consuming before

the increase in prices, you could reduce the quantity consumed of hardcover books and buy these books in a digital

form. In this way, you would end up saving money, which you could spend on other goods and hence increase your

utility. In other terms, when you are compensated à la Slutsky, you might adjust your consumption’s choices to

reach an indifference curve that provides more utility.

4.5 Giffen Goods

The main goal of the Slutsky equation is to study the effect on consumption following

variations in prices, by decomposing the impact into channels. Based on it, next we

provide conditions under which the sign of the total price effect can be determined.

Remember that the Slutsky equation for good 1 when there is a change in its own price

is

∂x∗
1 (p1, p2, Y )

∂p1︸ ︷︷ ︸
total price effect

=
∂h∗

1 (p1, p2, U0)

∂p1︸ ︷︷ ︸
substitution effect (< 0)

− x∗
1 (p1, p2, Y )

∂x∗
1 (p1, p2, Y )

∂Y︸ ︷︷ ︸
income effect

(
⪌ 0
)

.

Thus, we might attain different results depending on the sign of the income effect.

Before studying this expression, let’s state some definitions. First, we distinguish

between two concepts related to total effects on prices.

� Good i satisfies the uncompensated law of demand (henceforth, ULD) if

∂x∗
1(p1,p2,Y )

∂p1
< 0.
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� Good i is a Giffen good when
∂x∗

1(p1,p2,Y )

∂p1
> 0.

As far as income effects go, goods can be classified into three categories.

� Good i is a normal good when the income effect is positive,
∂x∗

i (p1,p2,Y )

∂Y
> 0.

� Good i is an inferior good when the income effect is negative,
∂x∗

i (p1,p2,Y )

∂Y
< 0.

� Good i has a zero income effect when
∂x∗

i (p1,p2,Y )

∂Y
= 0.

Let’s start by inquiring upon conditions under which the total price effect will be nega-

tive, so that the ULD holds. Without loss of generality, we state the results in terms of

good 1.

Result 4.1 If good 1 is normal or has a zero income effect, then the ULD for good

1 holds.

It follows by the fact that

∂x∗
1 (p1, p2, Y )

∂p1︸ ︷︷ ︸
total price effect

=
∂h∗

1 (p1, p2, U0)

∂p1︸ ︷︷ ︸
(−)

− x∗
1 (p1, p2, Y )

∂x∗
1 (p1, p2, Y )

∂Y︸ ︷︷ ︸
normal good (+)

< 0.

As a corollary, if the ULD does not hold for good 1, then it is necessarily true that

good 1 is neither a normal or a zero income effect good. Put it differently, if a good is

Giffen, then it is necessarily inferior.

In real life, observing goods that are Giffen is rare. What actually matters about

Giffen goods is that variations in prices encompass an income effect. This means that

increases in prices reduce consumption when the ULD holds, but the decrease in con-

sumption is even more so than what the substitution effect dictates— higher prices not

only affect relative prices, but also reduce a consumer’s real income.

From this result we can also derive an important lesson: when you work with a model, it is important that you

identify the channels operating in the model. This allows you to know what type of story you are representing

through the model used. Thus, to identify a Giffen good, it is not enough to find a good for which there is a positive

relation between the consumption and its own price. You also need that the explanation for such a relation is the

one dictated by the model you are using. In consumer theory, it means that the income effect has to be driving the

result.
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For instance, an example of a Giffen good is not given by Apple increasing the price of its new iPhone and observing

that its sales increase. This is due to two reasons. First, we have not included quality as a concept that influences

demand. Presumably, Apple sells more when it launches a new cell phone because, among other things, it improves

its features. Thus, the effect is not explained by an income effect, but by the overhauls introduced—this aspect is

not covered by the baseline model we have presented.

Second, keep in mind that the total price effect is a partial derivative. Hence, we need to analyze a change in the

price ceteris paribus, such that any other aspect of the framework remains unchanged. If Apple provides a product

with greater quality (or even if people find the iPhone more appealing because it is trendy), then we would be

observing two effects taking place simultaneously: the effect from an increase in price and the effect from a change

in quality.

Given the remark provided, an example of a Giffen good requires not only finding

a negative relation between a good’s own price and its consumption. We need to think

of a situation where the price of the good changes ceteris paribus, with the fall in real

income explaining the variation in consumption.

One example of a Giffen good could be the following. Suppose a poor person living

with 2 CADs per day, who spends all her income on rice and meat. Assume also that

the price of one unit of rice is 0.50 CAD and the price of meat is 1.50 CAD, and that

she consumes 1 unit of rice and 1 of meat. Suppose now that the price of rice increases

to 1 CAD. In this situation, her income is not enough to afford both goods at the same

time. Hence, if we observe that she ends up consuming two units of rice and no meat at

all, rice behaves as a Giffen Good at that level of prices and income.

To be more precise, let’s think about the changes in terms of the Slutsky equation,

assuming that rice is a good inferior for all levels of prices and income. We could

expect that if she were compensated by the government for the increase in the price of

rice, she would consume more meat and less rice. But the reduction of real income is

substantial enough that she cannot afford both goods simultaneously. Thus, the income

effect dominates: the reduction of income translates into an increase in the consumption

of rice.

64



Mart́ın Alfaro Lecture Note 4. The Slutsky Equation

4.6 Example: Cobb Douglas

Suppose a consumer has a Cobb Douglas utility function with parameters α1 = α2 = 0.5.

Formally, this means that U (x1, x2) :=
√
x1x2. We consider two situations. In Situation

A, the consumer has income Y ′ := 2000 and faces prices p′1 := 4 and p′2 := 1. In

Situation B, Y and p2 do not vary, but the price of good 1 becomes p′′1 := 25. To keep

notation simple, we denote the variables of each situation by using superscripts ′ and ′′,

respectively.

Since p′2 = p′′2 = 1 and α1 = α2 = 1
2
, the Marshallian demands are x∗

1 (p1, Y ) = 1
2
Y
p1

and x∗
2 (p2, Y ) = 1

2
Y , and the indirect utility function is U∗ (p1, p2, Y ) = Y

2
√
p1
. We have

expressed the results as functions of Y and p1, because we will eventually change their

values throughout the example.

Using these results and substituting for the values p1 and Y in each situation, we

obtain the following results:

Situation (p1, p2, Y ) (x∗
1, x

∗
2) U∗

Original (Situation A) (4, 1, 2000) (250, 1000) 500

∆p1 (Situation B) (25, 1, 2000) (40, 1000) 200

The total variation in consumption is (∆x1,∆x2) := (−210, 0). The goal is now to

decompose the total change in consumption into substitution and income effects. Since

there are two ways to calculate the substitution effect (Hicks vs Slutsky), next we consider

each case separately.

4.6.1 Slutsky Compensation

Suppose we compensate the agent à la Slutsky. This means that the agent receives

additional income at the new prices, such that the original bundle is affordable. More

specifically, the agent needs to get enough income such that she can afford the bundle

(x′
1, x

′
2) := (250, 1000) at the prices (p′′1, p

′′
2) := (25, 1).
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Originally, she was having an income Y ′ = 2000. To afford the basket of situation A

under the prices of situation B, she needs a total income Y S equal to:

Y S := p′′1x
′
1 + p′′2x

′
2,

:= 25× 250 + 1× 1000 = 7250.

Since she was already having an income of 2000, the compensation ∆Y S has to equal

∆Y S := 5250.

From this, we determine the Marshallian demands in case the consumer is compen-

sated. We denote each with a superscript S:

xS
1 := x∗

1 (25, 1, 7250) = 145

xS
2 := x∗

2 (25, 1, 7250) = 3625

With this income, she gets a utility US := 725. Given the remarks made before,

this occurs because when the variation in prices is not infinitesimal and the agent is

compensated à la Slutsky, she ends up with a greater utility relative to what she was

getting before the compensation.

Situation (p1, p2, Y ) (x∗
1, x

∗
2) U∗

Original (4, 1, 2000) (250, 1000) 500

∆p1 (25, 1, 2000) (40, 1000) 200

Slutsky (25, 1, 7250) (145, 3625) 725

From this, we conclude that, when there is a change in p1 from p′1 = 4 to p′′2 = 25, the

total reduction in the consumption of good 1 is 210 units (40− 250). Moreover, this can

be broken down into a decrease in 105 units (145− 250) due to the Slutsky substitution

effect, and 105 units due to the income effect (40− 145).

It is also interesting to split the total effect on the quantities of good 2. In that case,

the variation in p1 determines an increase in the consumption of good 2 due to the Slutsky

substitution effect of 2625 units (3625− 1000), but a reduction in the consumption due

to the income effect of 2625 units (3625−1000). Overall, the quantity consumed of good
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2 does not change, because each effect cancels out with each other.

Compensation
(
x′
1, x

′
2

) (
x′′
1 , x

′′
2

) (
xC
1 , xC

2

)
(∆x1,∆x2) Subst. Effect Income Effect

Slutsky (250, 1000) (40, 1000) (145, 3625) (−210, 0) (−105,+2625) (−105,−2625)

4.6.2 Hicks Compensation

Let’s consider now a compensation à la Hicks. This requires obtaining the total income

needed to achieve the utility level of Situation A, but with the prices of Situation B.

We can do this by making use of the minimum expenditure function. For the Cobb

Douglas, and taking U0 and p1 as parameters, this is given by E∗ (p1, p2, U0) = 2U0
√
p1.

Hence, the total income Y H that she needs to achieve the utility U ′ = 500 at the prices

(p′′1, p
′′
2) := (25, 1) is:

Y H := E∗ (p′′1, p
′′
2, U

′)

:= E∗ (25, 1, 500) = 5000

Since she was already having 2000 units of money, the Hicks compensation is then

∆Y H := 3000. We denote the Marshallian demands when the agent is Hicks compensated

with a superscript S. Hence,

xH
1 := x∗

1 (25, 1, 5000) = 100

xH
2 := x∗

2 (25, 1, 5000) = 2500

Notice we could have obtained those demands in a different way. By using duality, we know that for any good i,

x∗
1 [p1, p2, E

∗ (p1, p2, U0)] = h∗
1 (p1, p2, U0). Hence, xH

i is equal to the value of the Hicksian demand h∗
i (25, 1, 500).

The final table is then:
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Situation (p1, p2, Y ) (x∗
1, x

∗
2) U∗

Original (4, 1, 2000) (250, 1000) 500

∆p1 (25, 1, 2000) (40, 1000) 200

Slutsky (25, 1, 7250) (145, 3625) 725

Hicks (25, 1, 5000) (100, 2500) 500

Calculating the substitution and income effects as we did in the case of the Slutsky

compensation, we end up with the following results:

Compensation
(
x′
1, x

′
2

) (
x′′
1 , x

′′
2

) (
xC
1 , xC

2

)
(∆x1,∆x2) Subst. Effect Income Effect

Slutsky (250, 1000) (40, 1000) (145, 3625) (−210, 0) (−105,+2625) (−105,−2625)

Hicks (250, 1000) (40, 1000) (100, 2500) (−210, 0) (−150,+1500) (−60,−1500)

4.6.3 Differences Between Compensations

Suppose now that the price of good 1 changes to p′′1 = 5.

Situation (p1, p2, Y ) (x∗
1, x

∗
2) U

Original (4, 1, 2000) (250, 1000) 500

∆p1 (5, 1, 2000) (200, 1000) 447.2

Slutsky (5, 1, 2250) (225, 1125) 503.1

Hicks (5, 1, 2236.1) (223.6, 1118) 500

Calculating the substitution and income effects as we did in the case of the Slutsky

compensation, we get the following results:

Compensation
(
x′
1, x

′
2

) (
x′′
1 , x

′′
2

) (
xC
1 , xC

2

)
(∆x1,∆x2) Subst. Effect Income Effect

Slutsky (250, 1000) (200, 1000) (225, 1125) (−50, 0) (−25,+125) (−25,−125)

Hicks (250, 1000) (200, 1000) (223.6, 1118) (−50, 0) (−26.4,+1500) (−23.6,−1500)

The differences in quantities are just 0.62% after an increase in price of 25%, so the

ratio is 2.48. On the contrary, the differences in quantities before were 45% after an

increase in price of 525%, with hence a ratio of 8.57.
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Figure 4.1. Slutsky Equation - Hicks Compensation with ↑ p1

(a) Original Situation

x2(x1)

x1

U∗

x∗
1

x∗
2

(b) Hicks Compensation

x2(x1)

x1

U∗

x∗
1

x∗
2

xHC
1

xHC
2

(c) After ↑ p1

x2(x1)

x1

U∗

x∗
1

x∗
2

xHC
1

xHC
2

U∗∗

x∗∗
1

x∗∗
2

Note: The Hicks compensation keeps the level of utility fixed at the level of original indifference curve, but
taking the change in prices into account (reflected in the slope of the dashed line). Since the price of good
1 has increased, the substitution effect determines that less is consumed of good 1 and more of good 2 is
consumed. Given how we have drawn the graph, we are implicitly assuming that the income effect is positive
for both goods. This can be noticed since the changes in quantities from the Hicks compensation to the final
consumption make the consumption of both goods decrease. That is, the decrease in real income determines
that the consumer reduces the consumption of both goods.
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Figure 4.2. Slutsky Equation - Slutsky Compensation with ↑ p1

(a) Original Situation

x2(x1)

x1

U∗

x∗
1

x∗
2

(b) Slutsky Compensation

x2(x1)

x1

U∗

x∗
1

x∗
2

xSC
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xSC
2

USC

(c) After ↑ p1
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U∗

x∗
1

x∗
2
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USC

U∗∗

x∗∗
1

x∗∗
2

Note: The Slutsky compensation allows the consumer to afford the original bundle
(
x′
1, x

′
2

)
at the new prices

(reflected in the slope of the dashed line). Since the price of good 1 has increased, the substitution effect
determines that less is consumed of good 1 and more of good 2. Notice that the graph is not considering an
infinitesimal variation of the price, and so the consumer can actually be better off with a Slutsky compensation
(i.e. can reach an indifference curve with a greater utility). Also, given how we have drawn the graph, we are
implicitly assuming that the income effect is positive for both goods. This is reflected in through changes in
quantities with the Slutsky compensation such that the final consumption entails a decrease in the consumption
of both goods.
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4.7 Exercises

[1] Laura usually takes his little son Julian to the park. When they go there, she

usually gives him Y ′ := 2 CAD. With this money, Julian can go to the nearest

convenience store and buy some lollipops (good 1) and candies (good 2). The

price of each good is given by (p′1, p
′
2) = (1, 1). However, the last time, the price

of lollipops had increased to p′′1 := 2 CAD. Suppose Julian’s utility function is

U (x1, x2) :=
√
x1x2 (hint: since you’ll have to calculate solutions for different

values of parameters, I recommend you to solve the UMP and EMP using income

and prices as parameters, and then use a Google SpreadSheet or Excel, to calculate

the solution for specific values).

(a) Determine the Marshallian demands and indirect utility function of Julian in

the original situation, where (Y ′, p′1, p
′
2) := (2, 1, 1)

(b) Determine the Marshallian demands and indirect utility function of Julian in

the new situation, where (Y ′′, p′′1, p
′′
2) := (2, 2, 1)

(c) Julian became really anguished by the price increase. Due to this, Laura

decided that she’ll give him one additional CAD the next time they go to the

park, so he can buy one unit of each good. This mean that
(
Y S, p′′1, p

′′
2

)
:=

(3, 2, 1). To her surprise, Julian does not end up consuming that amount of

each good.

i. Calculate the new consumption levels and explain Julian’s behavior.

ii. If Julian now could choose between the initial situation with (Y ′, p′1, p
′
2) :=

(2, 1, 1), and the situation in which the mother gave him more money and

so
(
Y S, p′′1, p

′′
2

)
:= (3, 2, 1), what would he choose? Explain.

(d) Laura knows Julian’s preferences (after all, he’s her son). So, instead of

giving him enough money to buy the initial bundle, she decides to make a

different deal: she’ll give Julian enough money to be as happy as in the original

situation, considering that (p′′1, p
′′
2) := (2, 1). How much money will she give
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him? What will Julian’s demands will be?

[2] (I’ll solve this one in class) Since 2011, the exchange rate between USD and CAD

has been depreciating. Nowadays, 1 CAD equals 0.75 USD, rather than 1 USD

as before. One consequence of a depreciation is that firms using imported inputs

suffer an increase in their costs. This is because firms need to spend more CADs

to buy the same amount of imported inputs.

Consider the following situation. Suppose that there are two types of firms in

an industry of Canada, which only sell their products domestically. Type-1 firms

(henceforth T1) import some of their inputs, while type-2 firms (T2) rely on local

inputs. Since T1 have been facing an increase in their costs, they had to increase

the price of their products. This has put them at a disadvantage relative to its

competition (i.e. T2). For this reason, some of these firms have gone bankrupt.

The government is worried that the unemployment rate could increase due to the

disappearance of T1 firms. For this reason, it has decided to intervene in the

market. However, rather than subsidizing T1 firms, it decided to follow a different

path: give additional income to Canada’s consumers, so that they can afford the

same bundle they were consuming at the new prices set by T1 (i.e. after their

increase in price).

The policy was a complete failure. Can you imagine reasons why this happened?

Answer Keys for Some of the Exercises:

1a) x′
1 = x′

2 = U ′ = 1, 1b) x′′
1 = 0.5, x′′

2 = 1 and U ′′ = 0.71, 1ci) x′′
1 = 0.75, x′′

2 = 1.5

and U ′′ = 1.07. 1d) Y = 2.83 with x1 = 0.71 and x2 = 1.41
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5.1 Introduction

We begin the study of specific utility functions by considering well-behaved functional

forms. This means that the solutions to the UMP and EMP are unique and interior,

under certain conditions. The presentation will cover two of the most pervasive utility

functions used in Economics: the Cobb Douglas and the quasilinear utility function.

5.2 Cobb Douglas

We have already used the Cobb Douglas utility function to illustrate some of the concepts

in consumer theory. Here, we provide a complete treatment of this case.

5.2.1 UMP

Consider two goods, 1 and 2, with prices p1 and p2. Moreover, the consumer has income

Y and make choices on quantities consumed (x1, x2) ∈ R2
++. The utility is given by

U (x1, x2) := xα1
1 xα2

2 ,

where α1, α2 > 0 and α1+α2 = 1. Remember that normalizing the sum of coefficients to

one is without loss of generality, since it arises by applying a monotone transformation.

The optimization problem the consumer is

max
x1,x2

U (x1, x2) = xα1
1 xα2

2 subject to Y = p1x1 + p2x2.

We have shown in a previous lecture that that Cobb Douglas function is strictly

quasiconcave, satisfies strong monotonicity, and the Inada condition hold for each good.

This ensures that the consumer’s problem has a unique interior solution, which can be

characterized through the Lagrange technique. It determines the following Marshallian
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demands:

x∗
1 (p1, Y ) = α1

Y

p1
,

x∗
2 (p2, Y ) = α2

Y

p2
.

Remember that we can apply a monotone transformation and the new utility function would still represent the same

preferences. So, for instance, a Cobb Douglas utility function can be presented in its log form:

U (x1, x2) := α1 ln (x1) + α2 ln (x2)

where α1, α2 > 0 and α1 + α2 = 1.

I find the optimal solutions by making use of the log representation.Then, the Lagrangian is given by:

L := α1 ln (x1) + α2 ln (x2) + λ [Y − p1x1 − p2x2]

The FOCs are:

L ′
x1

= α1
x1

− λp1 = 0

L ′
x2

= α2
x2

− λp2 = 0

L ′
λ = Y − p1x1 − p2x2 = 0

An easy way to solve the equations and obtain the optimal Marshallian demands is to first consider L ′
x1

= 0 and

L ′
x2

= 0 and obtain a relation between x1 and x2. Then we plug the relation into the budget constraint (that is,

the equation L ′
λ = 0) to obtain the solution.

Let’s apply these steps. First, notice that the equations L ′
x1

= 0 and L ′
x2

= 0 can be expressed as α1
x1

= λp1 and

α2
x2

= λp2, respectively. Dividing both equations, we obtain an expression for x2 as a function of x1:
α1
x1
α2
x2

= λp1
λp2

⇒x2 = α2
α1

p1
p2

x1.

Plugging in this expression into L ′
λ = 0:

Y − p1x1 − p2x2 = 0 ⇒Y − p1x1 − p2
(

α2
α1

p1
p2

x1

)
= 0

⇒ Y − p1x1 −
(

α2
α1

)
p1x1 = 0⇒ x∗

1 (p1, Y ) = α1
Y
p1

Once we have the optimal Marshallian demand for good 1, we can obtain the optimal x2 by using that x2 = α2
α1

p1
p2

x1,

so that

x∗
2 = α2

α1

p1
p2

x∗
1⇒ x∗

2 = α2
α1

p1
p2

(
α1

Y
p1

)
⇒ x∗

2 (p2, Y ) = α2
Y
p2

.

The Marshallian demands of a Cobb Douglas exhibit a feature that makes it ideal for

empirical analyses. To derive this property, take good 1. Its demand can be reexpressed

as

p1x
∗
1 (p1, Y )

Y
= α1.

Notice that p1x
∗
1 (p1, Y ) is the consumer’s expenditure allocated to good 1, which becomes

pix
∗
i (p1,Y )

Y
if we divide it by Y . The expression is the expenditure share of good 1 relative

to total income, and equals α1 for the Cobb Douglas. Therefore, the expenditure share

of good i under a Cobb Douglas utility function is constant and equal to αi. The result
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requires that the sum of coefficients equals one, otherwise the expenditure share equals

αi

α1+α2
.

This property of the Cobb Douglas holds for any number of goods. To see this, suppose there is a set I := {1, 2, ...,M}

of goods. The optimization problem then becomes

max
(xi)i∈I

U =
∑
i∈I

αi ln (xi) subject to Y =
∑
i∈I

pixi,

where we assume that
∑

i∈I αi = 1. Although this is optimization problem is more complicated, the solution is

straightforward by using the property stated. Thus, the Marshallian demand of good i is such that its expenditure

share equals αi, so that
pix

∗
i (pi,Y )

Y
= αi. Therefore, the solution is still

x∗
i (pi, Y ) = αi

Y

pi
,

for any i ∈ I.

5.2.1.1 Comparative Statics

Once we assume a specific functional form, we can perform comparative statics in an easy

way. This requires simply taking derivatives of the Marshallian demands with respect

to the different parameters of the model. We show the results for good 1, since good 2

exhibits the same signs.

The Cobb Douglas determines that:

�

∂x∗
1(p1,Y )

∂p1
= −α1Y

(p1)
2 < 0, and so the uncompensated law of demand holds,

�

∂x∗
1(p1,Y )

∂p2
= 0, and so there is no relation between goods in terms of prices,

�

∂x∗
1(p1,Y )

∂Y
= α1

p1
> 0, and so the good is normal.

There is an alternative way that allows us to provide the same characterization, through

elasticities. In the Math Review, you can find how elasticities can be easily obtained by

applying logs. They determine the following:

�

∂ lnx∗
1(p1,Y )

∂ ln p1
= −1,

�

∂ lnx∗
1(p1,Y )

∂ lnY
= 1, and

�

∂ lnx∗
1(p1,Y )

∂ ln p2
= 0.
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All these elasticities are independent of the parameters αi. Thus, the own-price elasticity

and income eIasticity are always equal to one under a Cobb Douglas.

5.2.1.2 Indirect Utility Function

Substituting in the Marshallian demands, the indirect utility is

U∗ (p1, p2, Y ) =
Y

P
,

where P :=
(

p1
α1

)α1
(

p2
α2

)α2

.

U∗ (p1, p2, Y ) := U
[
x∗
1 (p1, p2, Y ) , x∗

2 (p1, p2, Y )
]

⇒ U∗ (p1, p2, Y ) =
[
x∗
1 (p1, Y )

]α1
[
x∗
2 (p2, Y )

]α2

⇒U∗ (p1, p2, Y ) =
(
α1

Y
p1

)α1
(
α2

Y
p2

)α2

we reorder the terms in brackets so that:

U∗ (p1, p2, Y ) =
(

α1
p1

Y
)α1

(
α2
p2

Y
)α2

⇒U∗ (p1, p2, Y ) =
(

α1
p1

)α1
(

α2
p2

)α2
Y α1+α2

and using that α1 + α2 = 1 and that
(

αi
pi

)αi
= (αi)

αi (pi)
−αi = 1(

pi
αi

)αi
then

U∗ (p1, p2, Y ) =Y
P where P :=

(
p1
α1

)α1
(

p2
α2

)α2
.

Furthermore, the Lagrange multiplier is given by ∂U∗(p1,p2,Y )
∂Y

by the Envelope Theo-

rem, and so

λ∗ (p1, p2) =
1

P
.

5.2.2 EMP

Next, we obtain the solution of the EMP. We first do it directly, by solving the EMP

through the Lagrange technique. After this, we show that there is a more straightforward

way to it, if we use the solution to the UMP and apply duality.

The EMP is

min
x1,x2

E = p1x1 + p2x2 subject to U0 = xα1
1 xα2

2

where we keep assuming that (x1, x2) ∈ R2
++ and α1, α2 > 0 with α1 + α2 = 1.

The Hicksian demands are:

h∗
1 (p1, p2, U0) = U0

(
α1

α2

p2
p1

)α2

and h∗
2 (p1, p2, U0) = U0

(
α2

α1

p1
p2

)α1
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The Lagrangian is:

L := p1x1 + p2x2 + µ
[
U0 − xα1

1 xα2
2

]
and the FOCs are:

L ′
x1

= α1x
α1−1
1 xα2

2 − µp1 = 0

L ′
x2

= xα1
1 α2x

α2−1
2 − µp2 = 0

L ′
µ = U0 − xα1

1 xα2
2 = 0

Just like with the UMP, an easy way to solve this system of equations is to first consider L ′
x1

= 0 and L ′
x2

= 0, to

obtain a relation between x1 and x2. Then, we plug the relation into the constraint (that is, the equation L ′
µ = 0)

to obtain the solution.

The tangent condition is the same as in the UMP, so that α1
α2

x2
x1

= p1
p2

.

From this, we obtain an expression for x2 as a function of x1: x2 = α2
α1

p1
p2

x1.

Plugging in this expression into L ′
µ = 0:

U0 − xα1
1 xα2

2 = 0⇒ U0 − xα1
1

(
α2
α1

p1
p2

x1

)α2
= 0

⇒ U0 − xα1+α2
1

(
α2
α1

p1
p2

)α2
= 0, which using that α1 + α2 = 1, then

h∗
1 (p1, p2, U0) = U0

(
α1
α2

p2
p1

)α2
.

Likewise, if we use x2 = α2
α1

p1
p2

x1, then h∗
2 (p1, p2, U0) =

(
α2
α1

p1
p2

)
h∗
1 (p1, p2, U0). This determines that

h∗
2 (p1, p2, U0) = U0

(
α2
α1

p1
p2

)α1
.

The minimum expenditure is

E∗ (p1, p2, U0) = U0

(
p1
α1

)α1
(
p2
α2

)α2

= U0P

By definition, E∗ (p1, p2, U0) = p1h∗
1 (p1, p2, U0) + p2h∗

2 (p1, p2, U0). Hence,

E∗ (p1, p2, U0) = p1U0

(
α1
α2

p2
p1

)α2
+ p2U0

(
α2
α1

p1
p2

)α1

⇒ E∗ (p1, p2, U0) = U0

[
p1
(

α1
α2

p2
p1

)α2
+ p2

(
α2
α1

p1
p2

)α1
]

⇒ E∗ (p1, p2, U0) = U0

[
(p1)

1−α2

(
α1
α2

)α2
(p2)

α2 + (p2)
1−α1

(
α2
α1

)α1
(p1)

α1

]
By using that α1 + α2 = 1, then α2 = 1− α1 and α1 = 1− α2. Therefore,

E∗ (p1, p2, U0) = U0

[
(p1)

α1

(
α1
α2

)α2
(p2)

α2 + (p2)
α2

(
α2
α1

)α1
(p1)

α1

]
⇒ E∗ (p1, p2, U0) = U0 (p1)

α1 (p2)
α2

[(
α1
α2

)α2
+
(

α2
α1

)α1
]

Finally, using that
(

α1
α2

)α2
+
(

α2
α1

)α1
=
(

α1
α2

)α2
+
(

α2
α1

)1−α2
we can reexpress the RHS(

α1
α2

)α2
+
(

α2
α1

)(
α1
α2

)α2
⇒

(
α1
α2

)α2
(
1 + α2

α1

)
⇒

(
α1
α2

)α2
(

α1+α2
α1

)
⇒ (α1)

α2−1 (α2)
−α2 which is just(

1
α1

)α1
(

1
α2

)α2
.

Thus, E∗ (p1, p2, U0) = U0 (p1)
α1 (p2)

α2

[(
α1
α2

)α2
+
(

α2
α1

)α1
]
becomes

E∗ (p1, p2, U0) = U0 (p1)
α1 (p2)

α2

(
1
α1

)α1
(

1
α2

)α2
which gives the result.

By using the Envelope Theorem, we can also obtain the the optimal Lagrange mul-

tiplier µ∗, since ∂E∗(p1,p2,U0)
∂U0

= µ∗ (p1, p2, U0):

µ∗ (p1, p2, U0) =

(
p1
α1

)α1
(
p2
α2

)α2

= P
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5.2.2.1 Application of Duality

The Hicksian demands have been derived by solving the EMP. However, we could have

also obtained the same result by using duality.

We know that the indirect utility function is U∗ (p1, p2, Y ) = Y
P . Moreover, the

relation between both optimization problems determines that if U0 = U∗ (p1, p2, Y ) then

Y = E∗ (p1, p2, U0). Applying this to the case of a Cobb Douglas determines that U0 =

E∗(p1,p2,U0)
P , which implies that

E∗ (p1, p2, U0) = U0P

The Hicksian demands can thus be obtained in two different ways. First, once we

have recovered E∗, we can apply Shepard’s Lemma to E∗ (p1, p2, U0) = U0P.

We have that P :=
(

p1
α1

)α1
(

p2
α2

)α2
and so ∂P

∂p1
= (α1)

1−α1 (p1)
α1−1

(
p2
α2

)α2
. Shepard’s Lemma establishes that

∂E∗(p1,p2,U0)
∂p1

=h∗
1 (p1, p2, U0) and so h∗

1 (p1, p2, U0) = U0 (α1)
1−α1 (p1)

α1−1
(

p2
α2

)α2
. By using that α1 + α2 =

1, then 1 − α1 = α2 which implies that h∗
1 (p1, p2, U0) = U0

(
α1
α2

p2
p1

)α2
. By the same token, h∗

2 (p1, p2, U0) =

U0

(
α2
α1

p1
p2

)α1
.

Alternatively, we can start from the Marshallian demands and then use duality.

The Marshallian demand of good 1 is x∗
1 (p1, Y ) = α1

Y
p1

. Duality implies that x∗
1 [p1, p2, E (p1, p2, U0)] =

h∗
1 (p1, p2, U0). Hence, replacing in the MArshallian demand, h∗

1 (p1, p2, U0) = α1
E(p1,p2,U0)

p1
and so h∗

1 (p1, p2, U0) =

α1
U0P
p1

. By using that P :=
(

p1
α1

)α1
(

p2
α2

)α2
then

h∗
1 (p1, p2, U0) = U0α1

(
p1
α1

)α1
(

p2
α2

)α2

p1

⇒ h∗
1 (p1, p2, U0) = U0

(
p1
α1

)α1
(

p2
α2

)α2

p1
α1

⇒ h∗
1 (p1, p2, U0) = U0

(
p1
α1

)α1−1 (
p2
α2

)α2
.

By using that α1 + α2 = 1, then

h∗
1 (p1, p2, U0) = U0

(
p1
α1

)−α2
(

p2
α2

)α2
⇒ h∗

1 (p1, p2, U0) = U0

(
α1
α2

p2
p1

)α2
.

Similar procedure for h∗
2.

5.3 Quasilinear Utility Function

The quasilinear is well-behaved when income is high enough to afford both goods. This

is the usual assumption. However, we will see that there are corner solutions when
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income is low. Intuitively, the reason is that the quasilinear utility function satisfies

Inada conditions for one of the goods, but not the other.

We say that U is a quasilinear function when

U (x1, x2) := u (x1) + x2,

where (x1, x2) ∈ R2
+.

Good 2 enters linearly into the utility function and is usually referred to as the

numéraire. This term is just a fancy way to say that p2 := 1. The numéraire good is

usually interpreted as a composite good representing “the rest of the goods”, with the

analysis focusing on good 1. Even when we will assume that p2 = 1, we will keep track

of p2 in the solutions to show its role in the results.

With the goal of having a well-defined optimization problem, we suppose that u

is strictly increasing, strictly concave, and satisfies Inada conditions. Formally, u is

such that du(x1)
dx1

> 0 (strictly increasing) and d2u(x1)

dx2
1

< 0 (strictly concave), and Inada

conditions refer to lim
x1→0

du(x1)
dx1

= ∞ and lim
x1→∞

du(x1)
dx1

= 0. Notice that Inada condition

only apply to good 1, which rules out the corner solution with x1 = 0 and all income

spent on good 2. However, we do not assume Inada condition for good 2. In fact, this is

not possible, since ∂U(x1,x2)
∂x2

= 1 for all x1 when we should actually have that this term

is infinite for x2 → 0. Thus, it is possible to have a corner solution where only good 1 is

consumed, and we show below that this occurs for low level of incomes.

To illustrate the results as clearly as possible, we assume a specific functional form

for u that satisfies all the conditions imposed. This is given by u (x1) := ln (x1).

5.3.1 Intuitions for The UMP

The UMP is

max
x1,x2

U (x1, x2) = ln (x1) + x2

subject to Y = p1x1 + p2x2.
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Strictly speaking, this optimization problem should be solved by using the Kuhn-

Tucker procedure. In this way, we would cover the possibility that x2 is zero. Instead

of using this technique, we proceed more intuitively. We first show what the possible

solutions are, and then under which conditions they arise.

Suppose that x1 is glasses of water (a good that represents food), while x2 is number

of movies (a good representing entertainment). We want to know how the consumer

allocates her expenditure on each good. To keep matters simple, suppose that p1 = p2 =

1, with income unspecified for now.

Under a quasilinear utility function, the UMP can be understood as a sequential

allocation of each dollar. Given prices equal to one, each cent of dollar allows the

consumer to buy exactly the same quantity of water or movies. The consumer will

choose one of these options, according to which one provides more utility to her.

To identify the optimal decision between this two, we determine the marginal utility

of consuming one unit of each good:

∂U (x1, x2)

∂x1

=
1

x1

, (5.1a)

∂U (x1, x2)

∂x2

= 1. (5.1b)

The equations show that the marginal utility of good 1 depends on how much water she

is already consuming. On the contrary, she always get one unit of utility per movie,

irrespective of the number of movies already watched.

Suppose the scenario where she is not purchasing anything, and so has to decide how

to spend her first cents of a dollar. Her choice can be identified by comparing (5.1a) and

(5.1b) when the consumption of each good is zero. Formally,

lim
x1,x2→0

∂U (x1, x2)

∂x1

= ∞ vs lim
x1,x2→0

∂U (x1, x2)

∂x2

= 1,

where the term on the left reflects the increase in utility from buying water, and the

term on the right from watching movies. From this, we infer that consuming water gives

her a higher utility than watching movies. In fact, the utility attached to consuming

water is infinite, consistent with the idea that food is an indispensable item to live.
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The analysis can be repeated to identify how she would spend her subsequent cents

of dollars. Eventually, we would conclude that her first cents of income will be entirely

devoted to the consumption of water; no movies will be watched. Specifically, this way

to allocate income holds as long as

∂U (x1, x2)

∂x1

=
1

x1

> 1 =
∂U (x1, x2)

∂x2

. (5.2)

Equation (8.2) shows that she prefers to keep allocating cents to consuming water, until

she is buying a basket with x1 = 1 and x2 = 0. At that point, both expressions in (8.2)

are equal. This arises since the more water she consumes the lower the utility she gets

marginally, reflecting that she gets more satiated. Mathematically, this follows since

∂U(x1,x2)
∂x1

= 1
x1
, which satisfies that ∂2U(x1,x2)

∂x2
1

< 0. In particular, while she gets an infinite

utility when x1 → 0, she only gets ∂U(1,x2)
∂x1

= 1 when she is already consuming one glass

of water.

Once x1 = 1 and x2 = 0, the marginal utilities of both goods become equal. Buys

more water would have a contribution to utility lower than 1, since the marginal utility

is decreasing. For example, if she spends ten additional cents on water:

∂U (1.1, 0)

∂x1

=
1

1.1
< 1 vs

∂U (x1, x2)

∂x2

= 1.

Hence, from that point on, she will start consuming movies. In fact, since the marginal

utility of movies is constant, she will spend all her remaining income on movies.

What lessons can we derive from the example considered? First, the solution will

depend on the income the consumer has. Although we provided a solution for any level

of income, the analysis could have stopped at a point where she is only consuming water.

This is in fact the case when she has an income lower than one dollar.

Second, the quasilinear utility is particularly useful when the consumer needs a min-

imum threshold of a good. This is why we have used the example of water for good 1.

She needs to eat to live.

The final conclusion is that when income is really high, any additional income is
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spent on good 2. This determines that good 1 displays no income effects for high levels

of income. Thus, after a certain income threshold, increases in income do not affect the

consumption of good 1.

5.3.2 UMP

Next, we formally derive the solution to the UMP. With this goal, let’s start considering

that the consumer has an income high enough that she consumes both goods.

When we only focus on a scenario like this, we can identify the solution by using

the Lagrange technique, as we did with the Cobb Douglas. Alternatively, given the

structure of the problem, it is easier to plug in the constraint into the utility function,

and hence reduce the problem to a maximization with one good. Then, by using the

budget constraint, we can recover the solution of the other good.

Either method provides identical results, and we use the latter as is standard in the

literature. To do this, we start by writing the budget constraint as Y−p1x1

p2
= x2. Plugging

it into the utility function, the optimization problem becomes

max
x1

U (x1) = ln (x1) +
Y − p1x1

p2
.

Since we are assuming that the consumer is not constrained by her income, we can

find its optimal demand of x1 by the FOC:

du (x1)

dx1

=
1

x1

− p1
p2

= 0

⇒x∗
1 =

p2
p1
.

Maybe you feel more comfortable using Lagrange to pin down the solution. This technique can used when income

is high enough so that both goods are consumed. Next, I add the derivation, just in case you want to use this

alternative.

The Lagrangian is given by:

L := ln (x1) + x2 + λ [Y − p1x1 − p2x2]

and assuming that both goods are consumed, we can identify the solutions through the FOCs, which are

L ′
x1

= 1
x1

− λp1 = 0

L ′
x2

= 1− λp2 = 0

L ′
λ = Y − p1x1 − p2x2 = 0
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Similar to the Cobb Douglas case, we divide the first two equations, and then substitute in the result into the budget

constraint. Whenever you solve the UMP or EMP through Lagrange, I recommend you to try these steps. They

usually simplify the calculations considerably.

Applying these steps, we use the equations L ′
x1

= 0 and L ′
x2

= 0, determining that 1
x1

= λp1 and 1 = λp2. Dividing

both equations, we obtain that

1
x1

= p1
p2

and so the Marshallian demand of good 1 is x∗
1 (p1, p2) =

p2
p1

. Embedding the solution x∗
1 into the budget constraint,

we get:

Y − p1
(

p2
p1

)
− p2x2 = 0

from which we obtain x∗
2 (p1, p2, Y ) = Y −p2

p2
.

The solution x∗
1 = p2

p1
provides a specific meaning to the expression “high level of

income”. It is the income that allows the consumer to get x∗
1 = p2

p1
. Put it differently,

since the expenditure on good 1 would be p1x
∗
1 = p2, income has to satisfy Y ≥ p2 to be

sure that she spends p2 on the good 1.

What about the good 2? Once she spends p2 on good, she would spend the rest of

her income on good 2. In other words, good 2 acts as a residual variable that absorbs

all the income not spent on good 1. Formally, the expenditure on good 2 would be

p2x
∗
2 = Y − p1x

∗
1, which allows us to determine that x∗

2 =
Y−p2
p2

by using p1x
∗
1 = p2.

We have established the solution by supposing that the consumer has income enough

to afford as much as she want of good 1. However, by the intuition provided in the

previous section, we need to consider the possibility that the consumer has a low income,

and so only good 1 is consumed. A low income means in particular that Y < p2. It

represents the case where the marginal utility of good 1 is greater than that of good 2,

and so all the income is spent on good 1, nothing on good 2. This solution prevails until

income becomes Y = p2. After this, the marginal utility of good 2 becomes greater than

that of good 1. Thus, she will not consume additional quantities of good 1, and all the

income is spent on the good 2.
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Overall, the Marshallian demands are:

x∗
1 (p1, p2, Y ) =


Y
p1

if Y < p2

p2
p1

if Y ≥ p2

,

x∗
2 (p1, p2, Y ) =

 0 if Y < p2

Y−p2
p2

if Y ≥ p2

,

(5.3)

which formally shows one important feature of the quasilinear utility function: when

income is high enough, good 1 displays no income effects.

Remark
Note that the Marshallian demand are not piecewise for specific values

of (Y, p1, p2). If we know these values, the solution will be given by the choices when

Y ≥ p2 or the choices when Y < p2. Equation (5.3) is piecewise because it establishes

the demand for each possible values of the parameters.

Finally, by plugging the Marshallian demands into the utility function, we can also obtain

the indirect utility function:

U∗ (p1, p2, Y ) :=

 ln
(

Y
p1

)
if Y < p2

ln
(

p2
p1

)
+ Y−p2

p2
if Y ≥ p2

.

5.3.3 EMP

Although we could obtain the Hicksian demands by solving the EMP, it is easier to obtain

the solution by using duality. This procedure determines that the minimum expenditure

function E∗ is

E∗ (p1, p2, U0) :=

 exp (U0) p1 if Y < p2[
U0 + 1− ln

(
p2
p1

)]
p2 if Y ≥ p2

.

We use the duality relation between the indirect utility function and the minimum expenditure. Unlike the Cobb-

Douglas case, we have a piecewise indirect utility function. Therefore, we need to separately recover the minimum

expenditure for Y < p2 and for Y ≥ p2.

If Y < p2, then U∗ (p1, p2, Y ) = ln
(

Y
p1

)
. Hence, by duality, E∗ has to satisfy that U0 = ln

(
E∗(p1,p2,U0)

p1

)
which
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determines that E∗ (p1, p2, U0) = exp (U0) p1. In case Y ≥ p2, then U0 = ln
(

p2
p1

)
+

E∗(p1,p2,U0)−p2
p2

and so

E∗ (p1, p2, U0) =
[
U0 + 1− ln

(
p2
p1

)]
p2.

To obtain the Hicksian demands, we can apply Shepard’s Lemma (or use duality

again), getting

h∗
1 (p1, p2, U0) =

 exp (U0) if Y < p2

p2
p1

if Y ≥ p2

,

h∗
2 (p1, p2, U0) =

 0 if Y < p2

U0 − ln
(

p2
p1

)
if Y ≥ p2

.

(5.4)

Let’s start by deriving the result through Shepard’s Lemma. If Y < p2,
∂E∗(p1,p2,U0)

∂p1
= exp (U0) and

∂E∗(p1,p2,U0)
∂p2

= 0. If Y ≥ p2, then
∂E∗(p1,p2,U0)

∂p1
= p2

p1
and

∂E∗(p1,p2,U0)
∂p2

=
[
U0 + 1− ln

(
p2
p1

)]
− 1⇒

∂E∗(p1,p2,U0)
∂p2

= U0 − ln
(

p2
p1

)
.

Deriving the solution by duality requires using the Marshallian demands. Then, if Y < p2, x∗
1 (p1, p2, Y ) = Y

p1
and

x∗
2 (p1, p2, Y ) = 0. Therefore, h∗

1 (p1, p2, U0) =
E∗(p1,p2,U0)

p1
⇒ h∗

1 (p1, p2, U0) =
p1exp (U0)

p1
and h∗

2 (p1, p2, U0) = 0.

If Y ≥ p2, then x∗
1 (p1, p2, Y ) = p2

p1
and x∗

2 (p1, p2, Y ) = Y −p2
p2

. From this, h∗
1 (p1, p2, U0) = p2

p1
and

h∗
2 (p1, p2, U0) =

E∗(p1,p2,U0)−p2
p2

⇒ h∗
2 (p1, p2, U0) =

[
U0+1−ln

(
p2
p1

)]
p2−p2

p2
and dividing by p2 numerator and

denominator, h∗
2 (p1, p2, U0) = U0 − ln

(
p2
p1

)
.

5.3.4 Remarks on The Case Where Income is High

First Remark: The quasilinear utility is used in scientific articles assuming that income

is high enough that the consumer can afford both goods. Under this scenario, x∗
1 does

not depend on income.

The fact that good 1 displays no income effects is convenient in several cases. For

instance, it is appropriate when a researcher is studying a good that is negligible on a

consumer’s income, which we would expect to be insensitive to income. This justifies that

good 2 is usually interpreted as a composite good that represents the rest of the goods

consumed. To illustrate this, consider a researcher analyzing the demand for lollipops.

For this good, it is reasonable to assume that an increase in income has an effect close

to zero on a person’s demand.

The fact that the demand does not depend on income is also useful for models where
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real income is determined within the model. For instance, it would make sense to think

that a lower price of lollipops does not make the consumer richer in real terms. Thus,

a quasilinear utility function allows us to ignore feedback effects between the behavior

of the industry under analysis and the rest of the economy, where the latter determines

the real income of a consumer.

Second Remark: this is related to a topic included as optional in the previous

lecture note: when are the Marshallian and Hicksian demands equal? Suppose that

income is high enough that both goods are consumed, and the Marshallian demand of

good 1 is independent of income. In the previous lecture note, we showed that this

property holds iff the Hicksian demand does not depend on U0. In fact, we established

that zero income effects make the Marshallian and Hicksian demands be identical.

You can directly check this by comparing the demands of good 1 in (5.3) and (5.4).

Notice that this result only applies to the good that enters non-linearly into the utility

function. Since good 2 displays income effects, the Marshallian and Hicksian demands

of good 2 do not coincide.

5.3.5 A Parameter Reflecting Intensity of Preferences

I conclude the presentation of quasilinear utility functions by formalizing a scenario

through its use. The aim is to show that consumer theory is flexible enough to model a

real-life phenomenon.

Suppose the cell phone industry, and that new iPhone is about to be launched. You

receive information regarding the new features that will have and conclude that this will

substantially increase its demand. How can we capture that a good has become more

appealing for consumers?

Let’s modify the baseline quasilinear utility function with this goal. Suppose that

good 1 is the iPhone and good 2 is a composite good that represents the rest of the

goods in the economy. Consider that the utility function is

max
x1,x2

U (x1, x2) = A ln (x1) + x2.
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where A > 0.

The parameter A is incorporated in a way that it affects the marginal utility of good

1:

∂U (x1, x2)

∂x1

=
A

x1

,

so that a greater A results in a higher utility when good 1 is consumed. Thus, A

represents the intensity in which a consumer likes the iPhone.
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5.4 Exercises

[1] Alberta’s government is designing a policy to reduce the consumption of addictive

substances (henceforth, ASs), among the population of heavy users. The ASs

comprise illegal drugs, but also legal ASs like cigarettes. You’ve been hired to

assess some of the policies they are considering. To this end, you build a model

that represents a heavy consumer’s behavior. You represent the consumer’s choices

in terms of consumption per day.

The utility function you suppose is U (x1, x2) := A
√
x1 + x2 with A > 0, where

good 1 represents ASs and good 2 is a composite good representing the rest of

goods.

To quantify each policy’s magnitude, you find out after some research that a typical

heavy user has per-day income Y := 10 CAD, and that preferences can be described

by A := 8. To keep matters simple, also suppose that p1 := 2, and normalize good

2’s price so that p2 := 1.

(a) How can you justify the choice of this utility function to model ASs?

(b) Solve the consumer’s maximization problem. Then, determine each good’s

Marshallian demands for the parameters given. In particular, calculate how

much the representative agent spends on each good. (hint : since later you’ll

have to assume different values for the parameters, solve the problem para-

metrically and then replace for the values given).

(c) What is the role of the parameter A in this model? In particular, how do

increases in A affect the consumption decisions and why?

(d) A public servant is worried about the consequences in case heavy users have

higher income. Her concern is that these people would consume ASs more

heavily. What would you say about it?

(e) One of the proposals is levying a tax on legal ASs (for instance, cigarettes). In

fact, prohibitive taxes for legal ASs has been quite common worldwide in the
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last decades. Suppose in particular that this is done through a value-added

tax: 100% over the price paid by the consumer. Will the policy be effective?

Considering the set of parameters given, how many units will the consumer

stop buying?

(f) Another proposal has the illegal ASs as the target. This posits an issue: you

can not levy a tax on the consumption of those goods, since they are sold in

the black market. For this reason, one (not really popular) policy under study

is to set a 10% income tax. Using the set of parameters given, will this policy

be effective? Calculate each good’s consumption under this policy, and then

interpret the result.

(g) Another policy under consideration consists of a marketing campaign against

the use of ASs. This will diminish the consumption of heavy users by changing

their preferences. How would you capture this policy in terms of the model?

[2] Bart has an astonishing Krusty doll that has caught Milhouse’s attention. Milhouse

is quite interested in buying that toy to Bart. The goal of the exercise is to

determine under what conditions there will be a transaction.

Bart and Milhouse receive a monthly allowance, which is Y B > 0 for Bart and

Y M > 0 for Milhouse. They use that money to buy comics (good 2), whose price

is p2 := 2. Besides, the Krusty doll (good 1) was a Homer’s gift that gives Bart a

utility equal to ln (2). If Bart did not have the doll, he would derive zero utility

from that good. This information is captured by the following utility function for

Bart:

UB :=

 x2 if x1 = 0

ln (2) + x2 if x1 = 1 (i.e. if he keeps the doll)

Regarding Milhouse, he would derive a utility of ln (1 + A) if he gets the toy, and

zero utility if he has not have it (in which case, he’d only derive utility from good
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2). This is captured by the following the utility function:

UM :=

 x2 if x1 = 0

ln (1 + A) + x2 if x1 = 1 (i.e., if he gets the doll)

(a) Calculate the indirect utility function of Bart and Milhouse, given the al-

lowances they will use to buy comics.

(b) Suppose that Milhouse offers Bart an amount of money equal to M . What

is the range of values for M that induces Bart to sell the doll to Milhouse?

(hint: compare Bart’s utility of keeping the doll, in contrast to selling it and

getting M)

(c) Suppose that Bart asks for an amount B to Milhouse. What is the range of

values B that induce Milhouse to accept the offer? (Notice that B will be a

function of A) (hint: compare Milhouse’s utility of getting the toy and paying

B, relative to not getting it).

(d) Bart and Milhouse cannot agree on the doll price, and they ask Marge to set

a price. What restriction of values does A need to satisfy such that Marge

can find a price where Bart is willing to sell the good and Milhouse is willing

to buy it? Interpret the result.

Answer Keys for Some of the Exercises:

1b) x∗
1 = 4 and x∗

2 = 2, 1e) x∗
1 = 1 so it’ll decrease the consumption in 3 units, 1f)

x∗
1 = 4 and x∗

2 = 1.

2b) M ≥ 1.38, 2c) B ≤ 2 ln (1 + A), 2d) A ≥ 1.
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6.1 Introduction

So far, we have analyzed consumer theory by using well-behaved utility functions. In

particular, we studied the Cobb Douglas and the quasilinear utility function. In this set

of notes, we study three utility functions that do not satisfy at least one of the axioms of

well-behaved utility functions. These cases are referred to as perfect substitutes (linear

utility), perfect complements (Leontief function), and the max utility. As we will see,

they capture interesting phenomena that arise naturally in many circumstances.

The treatment of these utility functions is separate from the rest, since we cannot use

the FOC to solve the optimization problems related. Instead, we will have to analyze each

function’s behavior to determine their solutions. Throughout the analysis, we assume

that the consumption space is X1 ×X2 := R2
+.

6.2 Leontief Function (Perfect Complements)

The Leontief utility function is given by

U (x1, x2) := inf

{
x1

α1

,
x2

α2

}
where α1, α2 > 0.

Since the Leontief function gives the minimum of the two arguments as an output, it

can also be reexpressed as:

U (x1, x2) :=


x1

α1
if x1

α1
≤ x2

α2

x2

α2
if x1

α1
> x2

α2

By expressing the function in this way, we can show that the indifference curves have

the shape depicted in Figure 6.1. The dashed line passes through the vertex of each

L-shaped curve. This indicates that all the points along the dashed line satisfy x1

α1
= x2

α2
,

and so are represented by the line x2 =
α2

α1
x1.
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Figure 6.1. Indifference Curves - Leontief Function

x2(x1)

x1

Map of Indifference
Curves

x′
1

x′
2

x2 = α2

α1
x1

To understand what the Leontief function entails, αi can be interpreted as the units

of good i that make the argument i of the inf function equal to one. We can see this by

setting x1 = α1 and x2 = α2, so that each argument becomes equal to one, and so the

consumer obtains one unity of utility.

But what happens if, starting from a basket with x1 = α1 and x2 = α2, we increase

the consumption of one good in isolation? Then the infimum would still be one, providing

a level of utility equal to one. Graphically, when x1 = α1 and x2 = α2, we are at the

vertex of the indifference curve. This implies that the indifference curve are horizontal

if x1 increases, and are vertical if x2 increases.

Intuitively, the Leontief function represents situations where there is no possibility of

substitution between goods. Thus, if we start from a situation where x1

α1
= x2

α2
, increasing

the consumption of one of the goods in isolation would not increase the utility—both

goods are essential for the consumer. The consequence of this is that the consumption of

both goods needs to increase simultaneously and in a proportion α1 and α2 to increase

utility.

An extreme example of perfect complements would arise if a clothing store sold left

shoes (good 1) and right shoes (good 2) separately. The consumer then would only derive

utility if x1 = x2, otherwise she would not form a pair of shoes.
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6.2.1 Intuition for the UMP

To grasp some intuition before solving the UMP formally, we provide an illustration by

giving specific values to the parameters. The UMP is,

max
x1,x2

U (x1, x2) = inf

{
x1

α1

,
x2

α2

}
subject to Y = p1x1 + p2x2.

To fix ideas, let good 1 be cups of coffee and good 2 packets of sugar.

Figure 6.2. Example of a Case Captured by the Leontief Function

Suppose that the preferences of the consumer are such that she neither enjoys drinking

coffee without sugar nor eating sugar alone. She only derives utility when she drinks

coffee with some sugar.

More specifically, we will suppose that she prefers to have two sugar packets per

cup of coffee. In terms of the Leontief function, the proportion in which she prefers to

consume each good is reflected through the parameters α1 and α2. Their values in the

example are α1 := 1 and α2 := 2. This determines that if x1 = 1 (one cup of coffee) and

x2 = 2 (two sugar packets), then she obtains one unit of utility.

Suppose her income is Y := 2. Moreover, each packet of sugar costs 50 cents, while

one cup of coffee 1 dollar. Formally, p1 = 1 and p2 = 0.5. Then, her maximization
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problem is

max
x1,x2

U (x1, x2) = inf
{
x1,

x2

2

}
subject to 2 = x1 +

x2

2
.

Consider now that she uses her two dollars of income to consume one cup of coffee

and two sugar packets. Then, her utility would be

U (1, 2) = inf

{
1,

2

2

}
= 1.

What does occur if she has two additional dollars available? Let’s first consider the

utility she gets by spending those additional two dollars in different ways. If she buys

two cups of coffee, without increasing the amount of sugar, she would get

U (3, 2) = inf

{
3,

2

2

}
= 1.

so her utility would remain the same. This arises since a Leontief utility function reflects

that she would consume one cup of coffee with two sugar packets, and throw away the

two other cups of coffee. The reason is that she has no sugar for these two cups of coffee.

Suppose that, instead, she decides to exclusively spend the extra two dollars on sugar,

increasing her number of packets to a total of four units. Then,

U (1, 6) = inf

{
1,

6

2

}
= 1,

and the utility remains the same, because she does not get any additional utility from

consuming sugar without coffee. We could also rationalize this result as she throwing

those four additional packets away, because she has no additional coffee. Consequently,

she still gets one unit of utility, because she consumes one cup of coffee with two sugar

packets.

From this, we can conclude that she only increases her utility if she simultaneously

buys both more coffee and sugar. In fact, the way in which she can spend the additional

income more efficiently is by buying two sugar packets and one cup of coffee. More

generally, every time her income increases, she needs to increase the consumption of

both goods in a proportion of two sugar packets per cup of coffee. This implies that the

optimal way to spend the extra two dollars is by buying one more cup of coffee and two
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more sugar packets, yielding

U (2, 4) = inf

{
2,

4

2

}
= 2

What happens if she spends her additional income in a different proportion? Al-

though she would increase her utility relative to consuming only one cup of coffee with

two sugar packets, there would always be an excess of one of the goods, which she would

not consume. For instance, suppose she buys 1.5 cups of coffee and 1 packet of sugar.

Then,

U (2.5, 3) = inf

{
2.5,

3

2

}
= 1.5

which is lower than the utility of the basket (2, 4). The intuition is that she only has 3

sugar packets available, and so she would only drink one a half cups of coffee. In this

context, it is optimal not to buy that additional amount of coffee, and instead spend the

additional money to buy sugar and coffee in a proportion of 2-to-1.

Remark
Two goods could be perfect complements in some contexts, but not in

others—ultimately, it depends on the situation we are analyzing. For example, a

couple could find that having dinner in a restaurant before watching a movie at a

theater are complementary activities. However, they could prefer only to watch a

movie if they do so at home.

6.2.2 UMP

Let’s now formally solve the UMP when a consumer is described by a Leontief function.

As a necessary condition, the solution to the optimization problem requires that both

arguments of the min function are equal:

x1

α1

=
x2

α2

This determines a relation between x1 and x2, given by x1 =
α1

α2
x2.
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Figure 6.3. Optimal Solution- Leontief Function

x2(x1)

x1x∗
1

x∗
2

Note: The red line represents the budget line. The blue lines are the indifference curves which
are convex but not strictly convex. The red dot is the optimal bundle.

Plugging in x1 =
α1

α2
x2 into the budget constraint, we obtain Y = p1

(
α1

α2
x2

)
+ p2x2,

which provides

x∗
2 (p1, p2, Y ) = Y

α2

α1p1 + α2p2
.

Likewise, by using thatx∗
1 (p1, p2, Y ) = α1

α2
x∗
2 (p1, p2, Y ), we can recover the Marshallian

demand of good 1:

x∗
1 (p1, p2, Y ) = Y

α1

α1p1 + α2p2
.

Finally, the indirect utility function is U∗ (p1, p2, Y ) = inf
{

Y
α1p1+α2p2

, Y
α1p1+α2p2

}
,

yielding

U∗ (p1, p2, Y ) =
Y

α1p1 + α2p2
.

We can formally show that the utility would be lower with any basket where the arguments of the inf function are

not equal. Hence, any of those baskets cannot be part of the solution.

Suppose the consumer splits the income in a proportion δ ∈ [0, 1] of good 1 and (1− δ) of good 2. Thus, the

consumption of each good is obtained from p1x1 = δY and p2x2 = (1− δ)Y , which determines that x1 = δ
p1

Y and

x2 =
(1−δ)
p1

Y . Notice that, by using this representation of baskets, we are encompassing all the possible bundles

that can be conceived. This is done by choosing different values of δ.

For a given δ, either U = δ
α1

Y
p1

or U =
(1−δ)
α2

Y
p2

, depending on which one is the lowest. Suppose that the first one

is the lowest, then δ
α1

Y
p1

<
(1−δ)
α2

Y
p2

. This inequality can be reexpressed as:

δ < (1− δ) α1p1
α2p2

⇒ δ
(

α1p1+α2p2
α2p2

)
< α1p1

α2p2
⇒ δ < α1p1

α1p1+α2p2
.

But when the arguments of the Leontief function are equal, then the utility is Y
α1p1+α2p2

. Besides, it can be shown

that Y
α1p1+α2p2

> δ
α1

Y
p1

iff α1p1
α1p1+α2p2

> δ, and the latter inequality holds since we were assuming that the first
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argument of the Leontief function was the minimum.

A similar proof could be provided when the second argument of the Leontief function is the minimum.

6.2.3 EMP

By using duality, we can easily obtain the solution of the EMP. Using the expression

for the indirect utility function, we know that E∗ has to satisfy U0 =
E∗(p1,p2,U0)
α1p1+α2p2

, which

determines

E∗ (p1, p2, U0) = (α1p1 + α2p2)U0.

By Shepard’s Lemma, which states that ∂E∗(p1,p2,U0)
∂pi

= h∗
i (p1, p2, U0), we can obtain the

Hicksian demands:

h∗
1 (p1, U0) = α1U0,

h∗
2 (p1, U0) = α2U0.

Remember we could have also obtained the Hicksian demands by applying duality to the

Marshallian demands.1

6.3 Max Function

To fix ideas, let’s consider a specific example. Suppose a person is at a cafe, and she is

deciding whether to consume a cup of coffee (good 1) or a cup of tea (good 2).

Figure 6.4. Example of a Case Captured by the Max Function

1For instance, the Marshallian for good 1 is x∗
1 (p1, p2, Y ) = Y α1

α1p1+α2p2
and, by duality, it satisfies

that h∗
1 (p1, p2, U0) = E∗ (p1, p2, U0)

α1

α1p1+α2p2
. By using E∗ (p1, p2, U0) = (α1p1 + α2p2)U0, then we

would get the same result.
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When the cashier has to take her order, we would be surprised if she orders coffee

and tea at the same time. Rather, we expect that she consumes one or the other. Based

on this, if we have to specify a utility function that represents this situation, it should

be such that the UMP provides corner solutions and never an interior solution. In other

terms, even if she is offered a diversified basket for free that includes coffee and tea, she

would only derive utility by consuming one and only one of the goods. The fact that

the max utility function rules out consuming both goods simultaneously is an important

difference relative to the case we analyze below, given by a linear utility function.

Formally, the type of situation described can be captured by the following UMP:

max
x1,x2

U (x1, x2) = sup {β1x1, β2x2} subject to Y = p1x1 + p2x2.

Rcall that the sup function can reexpressed as a piecewise function, such that the utility

function is equivalent to:

U (x1, x2) :=

 β1x1 if β1x1 ≥ β2x2,

β2x2 if β1x1 < β2x2.

Let’s analyze the max utility function for some specific parameter values. Suppose the

consumer likes coffee more than tea, which is parametrically reflected through β1 > β2.

Suppose in particular that β1 := 2 and β2 := 1, so that U (x1, x2) = sup {2x1, x2}.

If she consumes one cup of coffee and none of tea, her utility would be

U (1, 0) = sup {2, 0} = 2

Suppose now that there is a promotion where you get one cup of tea for free for every

cup of coffee you consume. Then, her utility would be

U (1, 1) = sup {2, 1} = 2

and so the utility remains the same. This occurs since she would only consume one cup

of either coffee or tea, but not both together. In particular, as she likes coffee more, she

would keep consuming one cup of coffee.

To provide a solution with parameters, assume that p1 := 1, p2 := 1, and Y := 1.
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This allows her to buy exactly one cup of coffee or tea. As we have said, the only

relevant baskets that maximize utility are those with only one good consumed. Since

U (1, 0) = sup {2, 0} = 2 and U (0, 1) = sup {0, 1} = 1, she would end up consuming one

cup of coffee.

What happens if we consider an interior solution? To see this, suppose that she splits

her income, spending a proportion θ ∈ (0, 1) on coffee and a proportion (1− θ) on tea.

Since prices and income are equal to one, then the basket consumed is (θ, 1− θ). Thus,

for a given θ, either U (θ, 1− θ) = 2θ or U (θ, 1− θ) = 1−θ, depending on the argument

of the utility function that is greater. But both values are lower than U (1, 0) = 2 for

any θ, and so they cannot be a solution—the utility would be lower for any θ, because

she would only consume one of the goods.

One additional case to consider is a knife-edge case, where the agent is indifferent

between consuming one unit of each good, i.e. between the potential corner solutions.

This scenario is important, since it is when the max function differs from the case of

perfect substitutes we study below.

For instance, take p1 := 2, p2 := 1, and Y := 1. The maximum quantity she can

afford of each good is x1 = 0.5 and x2 = 1. Hence, consuming only one of the goods

determines:

U (1, 0) = sup {2× 0.5, 0} = 1 and U (0, 1) = sup {0, 1} = 1

Since both options provide the same utility, then she will either buy half a cup of coffee

or one cup of tea. But, importantly, she would never consume some combination of both,

because any interior solution would decrease her utility.

In summary, the conclusion is that, irrespective of the prices and income, a consumer

with a sup utility function will always consume only one good. Although the intuition

provided should be clear, you can also conclude this by looking at the shape of the

indifference curves. They are illustrated in the following figure.
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Figure 6.5. Indifference Curves - Max Function

x2(x1)

x1

Map of Indifference
Curves

Note: The blue lines are the indifference curves. They are concave but not strictly concave. This
implies that the consumer does not like diversifying consumption.

6.3.1 UMP

Recall that the UMP is given by

max
x1,x2

U (x1, x2) = sup {β1x1, β2x2} subject to Y = p1x1 + p2x2.

As with the case of perfect complements, we cannot use the Lagrangian technique to

obtain a solution—the utility function is not differentiable everywhere. Due to this, we

proceed in two steps.

The first step builds on the intuition we provided before. We first calculate the

utilities when only one of the goods is consumed. Then, we show that any basket with

positive consumption of both goods provides less utility, and so they can be ruled out as

potential solutions.

In the second step, we use the fact that, by definition, a consumption bundle is

optimal if it provides the greatest utility. Therefore, we compare the utility of each

corner solution, and identify the value of the parameters such that one utility is greater

than the other. From this, we establish values of parameters that are consistent with

one specific bundle as a solution.

Step 1. In case the agent only consumes good 1, the budget constraint indicates
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that

Y = p1x1 + p20 ⇒ x1 =
Y

p1
,

and utility that she derives from this consumption is

U

(
Y

p1
, 0

)
= β1

Y

p1
.

By the same token, if she only consumes good 2, then x2 =
Y
p2

and so

U

(
0,

Y

p2

)
= β2

Y

p2
.

Only these corner solutions need to be considered to identify the optimal solution.

Let’s show formally that any basket with positive amounts of both goods provides less utility. Let’s focus on the case

where consuming exclusively good 1 provides a greater utility than consuming only good 2, so that β1
Y
p1

> β2
Y
p2

.This

without loss of generality, because “1” is just a label for the good; if good 2 provides a greater utility, then we could

relabel the problem and take it as good 1.

Suppose she considers to allocate some expenditure Y − δ on good 1 and expenditure δ on good 2. We assume that

0 < δ < Y , so that it covers any potential interior consumption we could think of. The utility she obtains with this

income allocation is still given by the maximum utility, where she consumes only one of the goods. Consequently,

depending on the value of δ, the maximum utility is either U = β1
Y −δ
p1

or U = β2
δ
p2

. But, for any value of δ > 0,

we have that β1
Y
p1

> β1
Y −δ
p1

. Moreover, β2
Y
p2

> β2
δ
p2

for any value of δ < Y , and since β1
Y
p1

> β2
Y
p2

, then

β1
Y
p1

> β2
δ
p2

. Therefore, there cannot be an interior solution, since any of them would provide a lower utility than

exclusively consuming good 1.

Step 2. We have ruled out interior solutions. We also argued that the only two

candidates for a solution are those bundles in which only one good is consumed. Next,

we establish the parameters where consuming only good 1 is the solution and those where

consuming good 2 is the solution.

Consuming only good 1 is optimal when it provides the greatest utility among the

two corner solutions. Thus, it is optimal to consume good 1 when:

U

(
Y

p1
, 0

)
> U

(
0,

Y

p2

)
,

⇒ β1
Y

p1
> β2

Y

p2
,

⇒ p1
p2

<
β1,

β2

The interpretation of this condition is straightforward if we reexpress it as β1

p1
> β2

p2
.

The term βi

pi
can be understood as the utility got per dollar spent on cups of good i. If
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the utility per dollar is greater for coffee than for tea, then she will consume coffee.

By the same token, consuming exclusively good 2 is a solution when

U

(
Y

p1
, 0

)
< U

(
0,

Y

p2

)
⇒ β1

Y

p1
< β2

Y

p2

⇒p1
p2

>
β1

β2

It rests to determine what happens when p1
p2

= β1

β2
, in which case the utility of each

corner consumption gives the same level of utility. The proof that interior consumptions

are never a solution applies to this case too. Therefore, we can rule out any of those

bundles as potential solutions, and they have to be a corner solution. Furthermore, since

both corner solutions provide the same utility, we conclude that both are actually a

solution.

Summing up, the Marshallian demands are:

x∗
1 (p1, p2, Y ) :=


Y
p1

if p1
p2

< β1

β2

0 if p1
p2

> β1

β2{
0, Y

p1

}
if p1

p2
= β1

β2

and x∗
2 (p1, p2, Y ) :=


0 if p1

p2
< β1

β2

Y
p2

if p1
p2

> β1

β2

Y
p2
1(x∗

1=0) if p1
p2

= β1

β2

The function 1(x∗
1=0) is known as the indicator function. It takes the value 1 if the

condition in brackets is met (in this case, if x∗
1 = 0) and zero otherwise. It is just a

compact way to write that x∗
2 would be equal to Y

p2
when x∗

1 = 0, and equal to 0 when

x∗
1 =

Y
p1
.

The Marshallian demands with a sup utility function are not functions, but correspondences. When

p1
p2

= β2
β1

, we have that x∗
1 could be either 0 or Y

p1
, which means that there are two potential solutions. Instead, a

function requires assigning only one value of the co-domain for each value of the domain (in this case, for each value

of prices and income). Correspondences refer to the case when there are multiple values.

The indirect utility function is U∗ (p1, p2, Y ) = sup {β1x
∗
1 (p1, p2, Y ) , β2x

∗
2 (p1, p2, Y )},

which can be rewritten as

U∗ (p1, p2, Y ) =

 β1
Y
p1

if p1
p2

≤ β1

β2
,

β2
Y
p2

if p1
p2

> β1

β2
.

Notice that β1
Y
p1

is the greatest utility when p1
p2

= β2

β1
. Instead, I could have established
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that β2
Y
p2

is the greatest utility. Both alternatives are valid, since β1
Y
p1

= β2
Y
p2
.

Finally, a more compact way to rewrite U∗ is

U∗ (p1, p2, Y ) = Y sup

{
β1

p1
,
β2

p2

}

Figure 6.6. Optimal Consumption - Max Function

(a) Only Good 1

x2(x1)

x1x∗
1

x∗
2

(b) Only Good 2

x2(x1)

x1x∗
1

x∗
2

(c) Any Good

x2(x1)

x1x∗
1

x∗
2

Note: The red line is the budget line. Blue lines are indifference curves. Moving in the north east direction,
utility increases. Thus, indifference curves further away from the origin provide a greater utility. The red dot
bundle provides the greatest utility and, in particular, it provides more utility than the green dot bundle.

6.3.2 EMP

By duality and given the indirect utility function, U0 = E∗ (p1, p2, U0) sup
{

β1

p1
, β2

p2

}
.

Thus, the minimum expenditure function is

E∗ (p1, p2, U0) =
U0

sup
{

β1

p1
, β2

p2

}
The Hicksian demands are:

h∗
1 (p1, p2, U0) :=


U0

β1
if p1

p2
< β1

β2

0 if p1
p2

> β1

β2{
0, U0

β1

}
if p1

p2
= β1

β2

and h∗
2 (p1, p2, U0) :=


0 if p1

p2
< β1

β2

U0

β2
if p1

p2
> β1

β2

U0

β2
1(h∗

1=0) if p1
p2

= β1

β2

where 1(h∗
1=0) is the indicator function taking the value 1 if the condition under brackets

(i.e. h∗
1 = 0) holds, and zero otherwise (i.e. h∗

1 ̸= 0).
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To obtain the Hicksian demands, we use duality applied to the Marshallian demands. Suppose p1
p2

< β1
β2

. Then,

x∗
1 (p1, p2, Y ) = β1

Y
p1

and, by duality,

h∗
1 (p1, p2, U0) =

E∗(p1,p2,U0)
p1

. Since p1
p2

< β1
β2

implies that β1
p1

> β2
p2

, this determines h∗
1 (p1, p2, U0) =

U0
β1

.

Suppose now that p1
p2

> β1
β2

. Then, x∗
1 (p1, p2, Y ) = 0 and, by duality, h∗

1 (p1, p2, U0) = 0.

If p1
p2

= β1
β2

then either x∗
1 (p1, p2, Y ) = 0 or x∗

1 (p1, p2, Y ) = Y
p1

. So, the Hicksian demand is either h∗
1 (p1, p2, U0) = 0

or h∗
1 (p1, p2, U0) =

E∗(p1,p2,U0)
p1

which is just h∗
1 (p1, p2, U0) =

U0
β1

. A similar procedure can be used for good 2.

6.4 Linear Utility (Perfect Substitutes)

The utility for perfect substitutes is

U (x1, x2) := β1x1 + β2x2

where β1, β2 > 0. The indifference curves have the following shape:

Figure 6.7. Indifference Curves - Linear Function

x2(x1)

x1

Map of Indifference
Curves

Note: The indifference curves are convex but not strictly convex. Remember that a linear function is convex
and concave at the same time.

Regarding the solution, the linear utility is akin to the sup utility. In particular, we

have the same solution when p1
p2

< β1

β2
or p1

p2
> β1

β2
, and we can arrive at them in exactly

the same way. The difference between both utility functions arises when p1
p2

= β2

β1
. We

proceed to explain mathematically how to find the solution when this occurs, and then

explain intuitively when the linear utility should be used.
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6.4.1 UMP

Suppose p1
p2

= β1

β2
, which implies that β1

p1
= β2

p2
. Unlike the case of the max function, any

basket that satisfies the budget line is a solution under a linear utility. Thus, if p1
p2

= β1

β2
,

the solution is x∗
1 ∈

[
0, Y

p1

]
and, from the budget constraint, x∗

2 =
Y−p1x∗

1

p2
.

Assume the consumer allocates expenditures Y − δ to good 1 and δ to good 2 where 0 ≤ δ ≤ Y . Notice that

by considering different values of δ, any feasible expenditure we could think of would be covered, including both

interior and corner expenditures. Once that we have established the expenditures, we can determine the quantities

consumed: since p1x1 = Y − δ then x1 = Y −δ
p1

. By the same token, x2 = δ
p2

. The utility that this basket gives is

U

(
Y − δ

p1
,
δ

p2

)
= β1

(Y − δ)

p1
+ β2

δ

p2

=
β1

p1
Y − δ

(
β1

p1
−

β2

p2

)
and, since β1

p1
= β2

p2
, then

U

(
Y − δ

p1
,
δ

p2

)
=

β1

p1
Y for any 0 ≤ δ ≤ Y

This shows that the utility level is independent of δ. In other terms, irrespective of the bundle we consider (obtained

by giving different values to δ), the utility is always the same. Therefore, since we have covered exhaustively all the

possible bundles, every basket that satisfies the budget constraint is a solution when p1
p2

= β1
β2

.

Figure 6.8. Optimal Consumption - Linear Function

(a) Only Good 1

x2(x1)

x1x∗
1

x∗
2

(b) Only Good 2

x2(x1)

x1

x∗
2

x∗
1

(c) Any bundle over
the budget line

x2(x1)

x1

Note: The red line is the budget line. Blue lines are indifference curves. Moving in the north
east direction, utility increases, so that indifference curves further away from the origin provide
a greater utility. The red dot bundle provides the greatest utility and, in particular, it provides
more utility than the green dot bundle.
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Overall, we have that for a linear utility the Marshallian demands are:

x∗
1 (p1, p2, Y ) :=


Y
p1

if p1
p2

< β1

β2

0 if p1
p2

> β1

β2[
0, Y

p1

]
if p1

p2
= β1

β2

and x∗
2 (p1, p2, Y ) :=


0 if p1

p2
< β1

β2

Y
p2

if p1
p2

> β1

β2

Y−p1x∗
1

p2
if p1

p2
= β1

β2

Moreover, the indirect utility function is U∗ (p1, p2, Y ) = β1x
∗
1 (p1, p2, Y ) +

β2x
∗
2 (p1, p2, Y ). Like in the case of the sup function, this can be written as

U∗ (p1, p2, Y ) = Y sup

{
β1

p1
,
β2

p2

}
.

6.4.2 EMP

To obtain the solution of the EMP, we use duality. The expenditure function is:

E∗ (p1, p2, U0) =
U0

sup
{

β1

p1
, β2

p2

}

We know the indirect utility function is U∗ (p1, p2, Y ) = Y sup
{

β1
p1

, β2
p2

}
. And by duality, if U0 = U∗ then E∗ = Y .

Therefore, plugging in those values in the indirect utility function, we get that U0 = E∗ sup
{

β1
p1

, β2
p2

}
which, by

isolating E∗, provides the result.

In turn, the Hicksian demands are

h∗
1 (p1, p2, U0) :=


U0

p1
if p1

p2
< β1

β2

0 if p1
p2

> β1

β2[
0, U0

β1

]
if p1

p2
= β1

β2

and h∗
2 (p1, p2, U0) :=


0 if p1

p2
< β1

β2

U0

p2
if p1

p2
> β1

β2

U0

β2
− p1

p2
x∗
1 if p1

p2
= β1

β2

The Hicksian demands for the cases p1
p2

> β1
β2

and p1
p2

< β1
β2

are the same as the sup function. So, let’s consider the

case β1
p1

= β2
p2

.

The Marshallian demand for good 1 is x∗
1 ∈

[
0, Y

p1

]
. Thus, h∗

1 ∈
[
0,

E∗(p1,p2,U0)
p1

]
or, what is same, h∗

1 ∈
[
0, U0

β1

]
since

E∗ (p1, p2, U0) = p1
β1

U0 at that point.a Regarding good 2, for a given x∗
1, the Marshallian demand is x∗

2 =
Y −p1x

∗
1

p2

and so h∗
2 =

E∗(p1,p2,U0)−p1x
∗
1

p2
. Given E∗ (p1, p2, U0) =

p2
β2

U0 we can express it as h∗
2 = U0

β2
− p1

p2
x∗
1.

b

aNotice that, since E∗ (p1, p2, U0) =
p1

β1
U0 = p2

β2
U0 when β1

p1
= β2

p2
, we could have also expressed

the Hicksian demand of good 1 as h∗
1 ∈

[
0, p2

p1

U0

β2

]
.

bLike in the previous footnote, since it is also true that E∗ (p1, p2, U0) = p1

β1
U0, we could also
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have expressed it as h∗
2 = p1

p2

[
U0

β1
− x∗

1

]
.

6.4.3 Comparison with the Max Function

Both the linear and the max utility have similar solutions to the UMP and

EMP, except for the case of indifference between the corner solutions. In

that case, while a consumer with linear utility function is completely indifferent to any

mixture of goods, a consumer with a max utility function would only choose one of the

corner solutions.

Although it seems a pretty small difference, it makes a huge difference conceptually.

Especially, in terms of the scenarios we could envision in one or the other case. For the

max function, we provided the example of consuming tea or coffee. However, choosing

a linear utility function to represent that example would be incorrect. If that were her

preferences, she would be indifferent between drinking a cup of either tea or coffee, or

simultaneously drinking tea and coffee.

So, when is the linear utility an accurate description of the situation? Let’s consider

the following example. A couple of years ago, Coke released a campaign called “share a

Coke.” The company was selling bottles of Coke with labels that included names (see

Figure 13.1). The goal was to encourage customers to buy a coke with a friend’s name

and share it with him. The price of the bottles with either Coke’s logo or names had the

same price.

Suppose a consumer doing grocery shopping. Assume that she decides to buy two

bottles of Coke for herself. Let the bottles of Coke with names on the label be good 1,

and those with Coke’s logo be good 2. Since the cokes are for herself, it is reasonable

to think that she is indifferent between buying Cokes with or without names on their

labels. Thus, since the prices of each type of bottle are the same, it is optimal to buy two

units of good 1, two units of good 2, or even one unit of each. In other words, assuming

that the consumer has a linear utility function is a reasonable assumption.
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Figure 6.9. Campaign Share a Coke

(a) Standard Label (b) Names on Labels

On the other hand, if we model her behavior through a max utility function, we

would be capturing a different decision process. In fact, it would be an implausible one

for the example considered. To see this, imagine that she still wants to buy two bottles

of coke, but there is only one bottle of each type available. With a max function, she

only derives utility by consuming one of the goods. Thus, she would either buy one

bottle with a name or one bottle with Coke’s logo. But she would never buy both at

the same time—with a max utility function she would only derive utility from one type

of bottle.

Remark
One important caveat is in order. I have taken the example of Coke

because it is quite intuitive. Furthermore, I considered that p1 = p2, along with a

utility function having β1 = β2, since the consumer was indifferent between one good

or the other. But note that the case of perfect substitutes is more general. Its relevant

feature is that, even if β1 > β2, we can find prices p1 and p2 such that the consumer

is indifferent between the corner solutions.
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6.5 Exercises

[1] John is a big fan of sandwiches, but he only likes plain sandwiches consisting of

two slices of bread with one slice of cheddar cheese. He only enjoys that particular

combination of ingredients. If, for any reason, a restaurant gives him more slices

of cheese without additional bread (or more bread without cheese), he throws the

cheese away. Of course, if they gave him one additional slice of cheddar joint with

two slices of bread, he would prepare another sandwich and eat it.

Denote x1 the slices of bread demanded and x2 the slices of cheese. Suppose John

has income Y and the price of each good is p1 and p2 at his nearest supermarket.

(a) Establish a utility function that represents John’s preferences. Justify your

choice. Can you provide another utility function that represents his prefer-

ences?

(b) Determine his Marshallian demands and the indirect utility function.

(c) Suppose that p1 = p2 = 1 CAD. Suppose that the supermarket offers him a

discount in one of the goods he consumes. The discount consists of 50 cents

per unit of the good. He can decide on which good the discount applies. What

good would he choose? Justify your choice.

(d) Suppose that John’s income is Y := 1000. Starting from a situation with

p1 = p2 = 1 CAD, suppose the cheese price increases to 1.50 CADs.

i. Determine the variation in each good’s demand. Then, decompose the

change in cheese demanded into the Slutsky substitution effect and income

effect.

ii. If all your calculations are right, each effect has a peculiarity. Indicate

what this is and why arises.

[2] After visiting a slaughterhouse, Janet has become vegan. However, she’s a really

peculiar type of vegan: she hates vegetables, except lettuce (good 1) and tomatoes
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(good 2). That’s all she consumes each week, and she enjoys both vegetables mixed

in a salad. However, she has a stronger preference for tomatoes: she would only

accept to exchange 1 kilogram of lettuce for 2 kilograms of tomatoes, irrespective

of how much she’s been consuming during the week.

(a) Establish a utility function that represents her utility.

(b) Suppose that each good’s price is 1 CAD per kilogram. Establish Janet’s

Marshallian demands

(c) Suppose now that the price of tomatoes is 2 CAD per kilogram, while the price

of lettuce is 1 CAD of per kilogram. Establish Janet’s Marshallian demands.

Some Answer Keys:

1a) Leontief utility function. In fact, there are infinite possible utility functions

(why?), 2a) Linear utility function.
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7.1 Introduction

One feature of consumer theory is that any monotone transformation of a utility function

still represents the same preferences. Formally, it means that utility functions are ordinal,

but not cardinal: we can compare two bundles and say which one the consumer prefers,

but we cannot quantify the magnitude in which she prefers a bundle. Put it differently,

we can establish what the consumer prefers and hence chooses, but not the intensity in

which she enjoys a particular bundle.

In this lecture, we provide two measures that quantify the intensity in which a con-

sumer is better off. These measures overcome the issue of having an ordinal utility by

using a metric based on monetary units. Throughout the presentation, we compare two

scenarios. The first one is the initial situation, and we refer to it as the status quo. The

second scenario considers that the price of one good increases relative to the status quo.

The first welfare measure we present is known as the Compensating Variation (CV).

It measures the monetary compensation that allows the consumer to achieve the initial

utility at the new prices. The second welfare measure is the Equivalence Variation (EV).

It provides the level of income that provides the same utility as the initial situation but

at the new prices. We will show that, actually, the computation of the EV and CV

requires computing the minimum expenditure function of the EMP. The only difference

is which utility we take as a base for the analysis.

7.2 Definitions of EV and CV

We denote the variables of the status quo with a prime, and the variables after the price

change with a double prime. Specifically, we consider an increase in the price of good

1. Moreover, we suppose that the income and price of good 2 are the same in both

situations. Formally, p′′1 > p′1, and respectively denote the income and price of good by

Y and p2.

Since we are considering a price increase, the utilities of the bundles satisfy that
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U ′′ < U ′. As we show below, each welfare measure we study requires establishing the

minimum expenditure that would be necessary to achieve either U ′′ (the EV measure)

or U ′ (the CV measure).

7.2.1 Equivalent Variation (EV)

Formally, the EV is defined as

EV := E∗ (p′1, p2, U
′′)− E∗ (p′′1, p2, U

′′) .

Notice that, by using duality, the minimum expenditure to achieve the indirect utility

U ′′ at prices (p′′1, p2) has to satisfy E∗ (p′′1, p2, U
′′) = Y . Hence,

EV := E∗ (p′1, p2, U
′′)− Y.

The intuition of the EV is that if the prices had remained at (p′1, p2), the consumer

would have needed less income to achieve utility U ′′. Thus, facing a reduction of income

equal to EV is equivalent in terms of welfare to facing the new prices and perceiving

income Y . A consumer would claim that “facing these new prices is like if the prices had

not changed, but my income had been reduced in an amount EV .”

7.2.2 Compensating Variation (CV)

Mathematically, the CV is defined as

CV := E∗ (p′1, p2, U
′)− E∗ (p′′1, p2, U

′) ,

and, by using duality, we get E∗ (p′1, p2, U
′) = Y and so

CV := Y − E∗ (p′′1, p2, U
′) .

The CV provides the additional income the consumer needs at the new prices to

obtain the same utility she was having before the increase in price.

Remark
Some authors define EV and CV differently. These definitions differ
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regarding the base utility that they use. What is important is that you understand

what utility you should be plugging in into the expenditure function, depending on to

the analysis you want to carry out.

7.2.3 Calculating the EV and CV

The EV and CV can be computed by using the definitions we just provided. However,

it is possible to compute in an alternative way, which could be easier depending on the

context.

To see this, remember that the Hicksian demand of good 1 can be obtained by

h∗
1 (p1, p2, U0) = ∂E∗(p1,p2,U0)

∂p1
due to Shepard’s Lemma. Moreover, the EV and CV are,

ultimately, defined as the variations in the minimum expenditure taking a different level

of utility as a base. Thus, by the fundamental theorem of the calculus,

EV :=−
∫ p′′1

p′1

h∗
1 (p1, p2, U

′′) dp1,

CV :=−
∫ p′′1

p′1

h∗
1 (p1, p2, U

′) dp1.

There are different ways to obtain the expression. Let’s consider the case of EV since the derivations are the

same for each welfare measure. The one that could be easier for you to understand is that, since h∗
1 (p1, p2, U0) =

∂E∗(p1,p2,U0)
∂p1

, then we can express h∗
1 (p1, p2, U0) dp1 = dE∗ (p1, p2, U0) and integrate the expression for the two

prices. However, this requires that someone makes you notice that Shepard’s Lemma is somehow related to EV.

One way in which we do not need a hint is just knowing that CV := E∗ (p′1, p2, U ′′) − E∗ (p′′1 , p2, U ′′) and then

we can apply what is known as the Second Fundamental Theorem of the Calculus. Just in case you have not seen

this before, the First and Second theorems are related to the conditions under which the integral and derivative are

inverse operations.

In our case, it states that E∗ (p′1, p2, U ′′) − E∗ (p′′1 , p2, U ′′) =
∫ p′1
p′′1

∂E∗(p1,p2,U′′)
∂p1

dp1. Hence, using Shepard’s

Lemma, we can reexpress the derivative within the integral by the Hicksian demand.

7.3 Relation between EV and CV

The two welfare measures provided do not necessarily coincide. In fact, they only do so

under a quasilinear utility function, as we show below. Why do they differ? The reason

is that both measures use different utility functions as a base, which in turn results in a

different valuation of good 1 by the consumer.

116



Mart́ın Alfaro Lecture Note 7. Welfare

To illustrate this, consider pronounced increases in the prices of some goods, such

that a rich person ends up becoming poor. Then, the value of one additional dollar

before the changes in prices (i.e., when the consumer was rich) and after (i.e., when the

consumer is poor) would not be the same. Consequently, the minimum expenditure to

get one more unit of utility would neither be the same, reflecting that poor people have

a higher marginal utility of income.

Taking this into account, we proceed to characterize the differences between the EV

and CV. In particular, we establish when one measure is greater than the other.

Result 7.1 For EV and CV , we can derive two conclusions about their magnitudes:

[1] The signs EV and CV coincide.

[2] The difference between their magnitudes depends on the income effect that the

good displays:

� if the good is normal: CV > EV .

� if the good is inferior: CV < EV .

� if the good has zero income effect: CV = EV .

The case of zero income effect arises when the utility function is quasilinear and there is

consumption of both goods. Then, we conclude that the EV and CV coincide under a

quasilinear utility.

7.4 An Example

To illustrate the computation of welfare measures, let’s consider a quasilinear utility

function. Specifically,

U (x1, x2) := ln

(
x1 +

1

2

)
+ x2.

We suppose that income is high enough and p ≤ 2, which ensures that both goods are

consumed in equilibrium. To simplify the calculations, we also assume that p2 := 1.
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Incorporating that p2 := 1, the EMP is given by

min
x1,x2

E = p1x1 + x2 subject to U0 = ln

(
x1 +

1

2

)
+ x2

which provides the following Hicksian demands and minimum expenditure function:

h∗
1 (p1) :=

1

p1
− 1

2
,

h∗
2 (p1) := U0 + ln (p1) ,

E∗ (p1, U0) := 1 + U0 + ln (p1)−
p1
2
.

To solve the EMP for a quasilinear utility function, it is easier to plug in the constraint into the objective function.

Specifically, the constraint can be rewritten as x2 = U0 − ln
(
x1 + 1

2

)
, and substituting it into the expenditure

function, the optimization problem is min
x1,x2

E = p1x1 +
(
U0 − ln

(
x1 + 1

2

))
. The FOC gives p1 − 1

x1+
1
2

= 0, which

provides h∗
1 (p1) :=

1
p1

− 1
2
. By using the constraint equation, we can recover the Hicksian demand for good 2. Since

h∗
2 = U0 − ln

(
1
p1

− 1
2
+ 1

2

)
and noticing that by property of the logarithm ln

(
1
p1

)
= − ln (p1), then

h∗
2 (p1, U0) := U0+ln (p1). Regarding the minimum expenditure function, it is given by E∗ (p1, U0) := p1

(
1
p1

− 1
2

)
+

U0 + ln (p1), or just E∗ (p1, U0) = 1− p1
2

+ U0 + ln p1.

We also need to solve the UMP, since computing welfare requires knowing the indirect

utility function in each scenario. The outcomes of the UMP are

x∗
1 (p1) :=

1

p1
− 1

2
,

x∗
2 (p1, Y ) := Y − 1 +

p1
2
,

U∗ (p1, Y ) := Y − 1− ln (p1) +
p1
2
.

Keep in mind that, for the quasilinear case, the Marshallian and Hicksian demands for good 1 are identical. There-

fore, x∗
1 (p1) = 1

p1
− 1

2
. By using the budget constraint, we can recover the Marshallian demand for good 2, so

that x∗
2 (p1, Y ) = Y − p1x∗

1 (p1), which provides x∗
2 (p1, Y ) = Y −

(
1− p1

2

)
. Finally, by duality and using that

E∗ (p1, U0) := 1 + U0 + ln (p1) − p1
2
, we have that Y = 1 + U∗ (p1, Y ) + ln (p1) − p1

2
, which determines that

U∗ (p1, Y ) := Y − 1− ln (p1) +
p1
2
.

Let’s compare two situations: one with p′1 := 1 and another with p′′1 := 2. While

x′
1 = 1

2
, notice that x′′

1 = 0. In fact, p′′1 := 2 represents the minimum price that makes

the consumer demand zero quantities of good 1. Thus, welfare in this scenario quantifies

the consumer’s well being, relative to a scenario where she does not consume the good
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at all. The indirect utility function in each case is:

U ′ = Y − 1

2
and U ′′ = Y − ln (2).

The EV takes the second situation as the utility base and therefore,

EV = E∗ (p′′1, U
′′)− E∗ (p′1, U

′′) ,

= Y −
[
Y − ln (2) +

1

2

]
= ln (2)− 1

2
,

Alternatively, we can calculate the EV by integrating the Hicksian demand:

EV =

∫ p′′1

p′1

h∗
1 (p1) dp1,

=

∫ 2

1

(
1

p1
− 1

2

)
dp1 =

[
ln (p1)−

p1
2

]2
1
,

= [ln (2)− 1]−
(
−1

2

)
= ln (2)− 1

2
.

As for the CV, we know that it equals the EV by property of the quasilinear utility

function. Nonetheless, let’s compute it to show how this is done. Using the utility in

the status quo as the base,

CV = E∗ (p′′1, U
′)− E∗ (p′1, U

′) ,

=

[
Y − 1

2
− ln

(
1

2

)]
− Y = ln (2)− 1

2
.

Alternatively, we could compute the CV by integrating the Hicksian demand. This can

be done by following the same steps as we did for the EV.
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7.5 Exercises

[1] Throughout this exercise, suppose that all monetary values are measured in USD.

Laura, an Economics professor living in the States, earns Y USA := 1000. She’s a

big fan of beer (good 1), which has a price pUSA
1 := 1 in the US. Suppose that

good 2 has pUSA
2 := 1 and comprises the rest of the goods she consumes. She has

received an offer to work at a university in Canada. They offer her exactly the

same salary, where also pC2 := 1 but the beer price is pC1 := 2.

Assuming that the professor’s utility function is U (x1, x2) := 1
2
ln (x1) +

1
2
ln (x2),

answer the following.

(a) The utility function reflects that the income proportion she spends on beer

could be considered representative of a beer fan. What is that proportion?

(b) Since the salary in Canada is the same but prices are higher, she does not

accept the offer and engages in a negotiation with the Canadian university.

Someone has overheard he asked for an increase in the salary of at least δ CAD

to accept the offer. The person couldn’t clearly listen to what δ is. Calculate

this value (hint: if you want to reduce the burden of calculations, start from U∗

and recover E∗ by duality. You can use that U∗ (p1, Y ) := lnY − ln
(√

p1
)
+κ

where κ := −ln (2) is a constant).

(c) The Canadian Economics Department is constrained by the money allocated

by the Dean. Thus, the salary of 1000 USD is a take-it-or-leave-it offer. The

professor’s family wants a fresh start and convinces her to accept the offer

anyway. While living there, the professor complains that paying the Canadian

beer price is like if she had never moved out from the US, but the American

university had reduced her salary in τ USD. Calculate τ .

Answer Keys for some of the exercises:

1b) 1000
(√

2− 1
)
which is approx 414.21, 1c) 1000

(
1− 1√

2

)
which is approx 292.9.
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8.1 Introduction

In this note, we focus on the cost minimization problem of a firm. Mathematically,

the problem is equivalent to the EMP of consumer theory, and so its treatment will be

relatively brief. Chiefly, the focus will be on the mathematical concepts that differ from

consumer theory. In particular, we present production functions that are homogeneous,

and define the concepts of returns to scale and economies of scale. We conclude by

showing a tractable way to introduce increasing returns to scale, through the existence

of fixed costs.

8.2 Cost Minimization Problem (CMP)

Suppose a firm producing a good with a technology that uses two factors, labor and

capital. We refer to a production function or technology indistinctly, and define it as a

function (l, k) 7→ f (l, k), where l ∈ R+ and k ∈ R+ are respectively the amount of labor

and capital used by the firm.

We suppose that f satisfies several properties. First, f is supposed to be increasing,

so that ∂f(l,k)
∂l

> 0 and ∂f(l,k)
∂k

> 0. Moreover, f is assumed strictly concave1, implying that

each factor has either constant or decreasing marginal returns. Formally, ∂2f(l,k)
∂l2

< 0,

∂2f(l,k)
∂k2

< 0, and det Jf > 0, where Jf is the Jacobian of the production function.

These assumptions are similar to those defining a well-behaved utility function, and

are not necessarily satisfied wwith standard functional forms. Their goal is to ensure

that there is a unique and interior equilibrium.

The function f represents production plans that are technologically efficient, rather than just possible. This means

that, even when the firm has different technologies available, f provides the most efficient way to use inputs (l, k).

For example, suppose that technique 1 produces f1 (1, 1) = 4 and technique 2 f2 (1, 1) = 3. The production function

f discards technique 2 since it is less efficient at the point where l = 1 and k = 1. Thus, f (1, 1) = 4, since technique

1 gives the maximum output, given the possible technologies.

1Just in case you are curious, in fact, we could simply assume quasiconcavity. Below, we are going
to assume that functions display nonincreasing returns to scale and, in that case, quasiconcavity and
concavity are equivalent.
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Notice that efficiency is only necessary to minimize costs, but not sufficient. For instance, to determine whether

(l = 2, k = 1) or (l = 1, k = 2) minimizes costs, we need to additionally know the price of the inputs. Efficiency only

establishes that f (2, 1) and f (1, 2) are chosen among the technologically efficient techniques that are available to

the firm.

The CMP identifies the combinations of (l, k) that minimize the cost of producing q

units of the good, where q is treated as a parameter. To understand the role of the CMP,

we can think of a firm as solving two different optimization problems. First, it has to

choose the optimal quantities to deliver to the market.2 This is usually expressed as a

profit-maximization problem. Second, it has to decide how to produce those quantities

that maximize profits. In this decision process, the CMP constitutes the second step of

the analysis, and we relegate the analysis of the first step to subsequent lectures.

Formally, the CMP is given by

min
l,j

C = lw + rk

subject to f (l, k) = q,

where w and r are the wages and remuneration to the capital, respectively. These

variables are exogenously given, reflecting that firms do not have monopsony power—

the firm is not so big that it can influence the price at which it buys its inputs.

Remark
Notice that by appropriately relabeling variables and functions, the

CMP is exactly the same as the EMP of consumer theory. The func-

tion f plays the same role as U , q as U0, and C as E.

The assumptions on f ensure that the CMP is well-behaved, and hence we can use the

Lagrange technique to solve it. The Lagrangian is

L (l, r, λ;w, r, q) := lw + rk + λ [q − f (k, l)] .

2Alternatively, a firm could choose the optimal price, which indirectly defines the quantities to deliver
according to its demand.
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and the FOCs are:

FOC:


∂L (·)
∂l

= w − λf ′
l (l, k) = 0

∂L (·)
∂x2

= r − λf ′
k (l, k) = 0

∂L (·)
∂λ

= q − f (l, k) = 0

The FOCs determines optimal choices l∗ = l (w, r, q) and k∗ = k (w, r, q), along with a

minimum cost function given by

C∗ (w, r, q) := wl (w, r, q) + rk (w, r, q) .

To characterize the solution, we use the first two equations from the FOC, which

determine that

w

r
=

f ′
l (l, k)

f ′
k (l, k)

. (8.1)

Equation (8.1) establishes that the optimal input choices depend on w
r
, rather than

(w, r). This is the same as in consumer theory, where only the relative prices matter for

choices, the absolute prices do not. Likewise, we can obtain a similar tangent condition

as in consumer theory, between the slope of the indifference curves and the budget

constraint. The only difference is that now we instead use isoquants (combinations of

inputs that produce the same level of output) and the cost function. In firm theory, the

expression
f ′
l (l,k)

f ′
k(l,k)

is usually referred to as the “technical rate of substitution”, so that

(8.1) indicates that the TRS equals the relative input prices.

We can also provided an alternative interpretation of the optimality condition, (8.1).

To do this, we can multiply and divide the left-hand side of (8.1) by the price of the

good, p. Rearranging the terms, (8.1) is equivalent to

p f ′
k (l, k)

r
=

p f ′
l (l, k)

w
. (8.2)

The term p f ′
l (l, k) indicates the revenue garnered by hiring one more worker: it pro-

vides an additional output f ′
l (l, k), with a market value of p f ′

l (l, k). Since this term is

divided by the wage, the right-hand side provides the revenue-cost relation of hiring one

additional worker. A similar interpretation can be established for the left-hand side, but
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in terms of capital.

Consequently, (8.2) shows that the optimal input choices need to equalize the ratio

revenue-cost for each input. On the contrary, suppose that there differences between

these rations, such that, for instance,
p f ′

k(l,k)

r
<

p f ′
l (l,k)

w
. Then, it is optimal to buy less

capital and hire more workers instead, since it would allow the firm to save costs.

8.2.1 Marginal Costs

Using the Envelope Theorem, we can derive some additional results. They provide in

particular an interpretation of the Lagrange multiplier, λ.

Procedure to apply the Envelope Theorem

Step 1. Construct the Lagrangian: L (l, k, λ;w, r, q) := lw + rk + λ [q − f (l, k)]

Step 2. Take derivatives of the Lagrangian with respect to each parameter of

interest, without embedding the optimal solutions:

�
∂L (l,k,λ;w,r,q)

∂q
= λ.

�
∂L (l,k,λ;w,r,q)

∂w
= l and ∂L (l,k,λ;w,r,q)

∂r
= k.

Step 3. Evaluate each derivative at the optimal values to obtain ∂C∗(w,r,q)
∂q

and

∂C∗(w,r,q)
∂w

:

�
∂C∗(w,r,q)

∂q
= λ∗ (w, r, q).

�
∂C∗(w,r,q)

∂w
= l∗ (w, r, q) and ∂C∗(w,r,q)

∂r
= k∗ (w, r, q).

We can derive two conclusions from these results. First, if we know the minimum cost

function, we can obtain the optimal demand of factors: they are given by the partial

derivatives of C∗ with respect to the input prices. Furthermore, λ∗ is the marginal

cost. It says how the minimum cost varies when the firm produces one additional unit

of the good.
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Remark
Strictly speaking, the marginal cost is neither the cost of producing one

additional unit of the good, nor the cost of producing the last unit of the good. The

expression ∂C∗(w,r,q)
∂q

indicates the total impact on costs by producing one additional

unit of the good. Thus, it takes into account the impact on all the units produced.

For future references, we denote marginal costs as MC (w, r, q) := λ∗ (w, r, q), and the

average costs by AC (w, r, q) := C∗(w,r,q)
q

.

8.2.2 Comparative Statics

We analyze how variations in the parameter affect a firm’s optimal choices of inputs. This

is done by performing comparative statics for the CMP. We state the results without

any formal proof. The derivations are identical to those of the EMP.

Result 8.1 The comparative statics of the CMP provide the following results:

�
∂l∗(w,r,q)

∂w
< 0 and ∂k∗(w,r,q)

∂r
< 0.

�
∂l∗(w,r,k)

∂r
> 0 and ∂k∗(w,r,q)

∂w
> 0 (this is only for the two inputs case, with an

ambiguous result for three or more inputs).

�
∂l∗(w,r,q)

∂q
⪌ 0 and ∂k∗(w,r,q)

∂q
⪌ 0.

8.3 Homogeneous Technologies

We study some technologies that are widely used in the literature. Our focus is on

the additional properties that they satisfy, since specific functional forms put additional

structure to the CMP. With this aim, we start by defining homogeneous functions.

Definition 8.1: A function f : X1 × X2 → R is homogeneous of degree h with

h ∈ R if, for any α > 0 and (x1, x2) ∈ X1 ×X2, then f (αx1, αx2) = αhf (x1, x2). This

is denoted f ∈ Hh.
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Commonly, the degree of homogeneity satisfiesh ∈ Z (i.e. it is an integer). Also,

homogeneity of a function allows for h taking a negative value. Notice f need not be

differentiable to define a homogeneous function. This is important when we analyze

cases like the Leontief production function, which is not differentiable everywhere (in

fact, the Leontief function is homogeneous of degree one).

Example

The Cobb Douglas production function, f (l, k) := lβlkβk , is homogeneous of degree

βl + βk. This follows since, given α > 0,

f (αl, αk) = (αl)βl (αk)βk ,

= αβl+βk lβlkβk ,

= αβl+βkf (l, k) ,

and so h := βl + βk by definition of homogeneous functions.

To provide some intuition for this result, we can use the characterization of homoge-

neous functions for the one-variable case. Given a function of one variable, g : R+ → R+,

it can be proven that g is homogeneous of degree α iff it is a power function, i.e.

g (x) := Axα for some A ∈ R. Although the result cannot be generalized to multi-

dimensional domains, it helps us understand that there is relation between the concept

of homogeneous functions and power functions.

8.3.1 Further Results (OPTIONAL)

Next, I add some concepts that are related to this topic, but we will be studied in this

course. I state them just in case you stumble upon them in other courses.

It is customary to work with functions that are not homogeneous, but rather a mono-

tone transformation of a homogeneous function. When this occurs, several properties

holding for homogeneous functions are preserved. For example, optimal solutions are

the same, thus inheriting the properties of the solutions for homogeneous functions (this

is not true for the value function).
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Definition 8.2: Let the production function f be strictly increasing. Then, we say that

f is homothetic when f is a monotone transformation of a homogeneous function.

Example

The Cobb Douglas production function expressed in logs is f (l, k) := βl ln (l)+βk ln (k).

It is not homogeneous of any degree, but it is a monotone transformation of a homoge-

neous function and hence homothetic.

Homogeneous functions that are differentiable satisfy an additional property known

as Euler’s theorem. In fact, this theorem holds as an “if and only if”, thereby providing

an alternative equivalent definition of homogeneous functions.

Theorem 8.3.1: Euler’s Theorem

Let f : R2
+ → R with f ∈ C1. Then, f ∈ Hh iff for any x1, x2 > 0, ∂f(x1,x2)

∂x1
x1 +

∂f(x1,x2)
∂x2

x2 = h f (x1, x2).

Finally, the following property can sometimes come in handy when you work with ho-

mogeneous functions.

Theorem 8.3.2

If f ∈ Hh then each partial derivative is homogeneous of degree h − 1. Formally,
∂f(x1,x2)

∂xi
∈ Hh−1 for i = 1, 2.

8.4 Returns to Scale (RS) and Economies of Scale

(ES)

Given some technology f , let f (α; l, k) := f (αl, αk) for α > 0. This function gives

information about the effect on total output from increasing all inputs in a proportion

α. For instance, starting from input choices
(
l, k
)
, a value α = 2 means we are doubling
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the amount of inputs relative to
(
l, k
)
.

Definition 8.3: Define the Elasticity of Production at a point
(
l, k
)
by EP

(
l, k
)
:=

d ln f(α;l,k)
d lnα

⌋
α=1

. We say that there are:

[1] Increasing RS (IRS) at
(
l, k
)
if EP

(
l, k
)
> 1,

[2] decreasing RS (DRS) at
(
l, k
)
if EP

(
l, k
)
< 1,

[3] constant RS (CRS) at
(
l, k
)
if EP

(
l, k
)
= 1.

I have added a bar above in
(
l, k
)
to emphasize that EP is a function and depends on

the combination of inputs used. Additionally, the fact that it depends on
(
l, k
)
implies

that EP is a local measure of scale. We will see, nonetheless, that the value of EP for

homogeneous functions is the same for any
(
l, k
)
.

Let’s analyze in particular the case with EP > 1 and EP = 1. CRS, i.e. when

E = 1, will be studied in more detail below. EP > 1 describes a technology such that

varying the inputs
(
l, k
)
in α% results in an increase in production higher than α%.

Put it differently, there is a more than proportional variation in output relative to the

variation in inputs.

There is an additional concept that is intimately related with EP , which is known

as the Elasticity of Scale. This is defined in terms of the minimum cost function.

Definition 8.4: Define Elasticity of Scale at a point (w, r, q) by ES (w, r, q) :=

∂ lnC∗(w,r,q)
∂ln q

. We say there are:

[1] economies of scale (ES) at (w, r, q) if ES (w, r, q) < 1,

[2] diseconomies of scale at (w, r, q) if ES (w, r, q) > 1.

The concept of ES can be alternatively characterized by its relation with

costs.
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Result 8.2 ES (w, r, q) = MC(w,r,q)
AC(w,r,q)

.

By definition, ES(w, r, q) :=
∂ lnC∗(w,r,q)

∂ln q
and, like any other elasticity,

∂ lnC∗(w,r,q)
∂ln q

=
∂C∗(w,r,q)

∂q
q

C∗(w,r,q)
or just

∂C∗(w,r,q)
∂q

1
C∗(w,r,q)

q

and the result follows.

The result implies that ES emerge when MC(w,r,q)
AC(w,r,q)

< 1, and so when marginal costs are

lower than the average costs. We conclude this part with an alternative characterization

of ES. It states that ES arise when average costs are decreasing.

Result 8.3 sgn
(

∂AC(w,r,q)
∂q

)
= sgn (ES − 1) where sgn is the sign function.

By definition, AC (w, r, q) :=
C∗(w,r,q)

q
and so

∂AC(w,r,q)
∂q

=
MC(w,r,q)q−C∗(w,r,q)

(q)2
and so

∂AC(w,r,q)
∂q

> 0 iff

MC (w, r, q) q − C∗ (w, r, q) > 0 or, dividing by q, iff MC (w, r, q) >
C∗(w,r,q)

q
= AC (w, r, q). Since ES (w, r, q) =

MC(w,r,q)
AC(w,r,q)

, the result follows.

∂AC(w,r,q)
∂q

ES(w, r, q) :=
∂ lnC∗(w,r,q)

∂ln q
and, like any other elasticity,

∂ lnC∗(w,r,q)
∂ln q

=
∂C∗(w,r,q)

∂q
q

C∗(w,r,q)
or just

∂C∗(w,r,q)
∂q

1
C∗(w,r,q)

q

and the result follows.

8.4.1 CRS and ES under Homogeneous Functions

The characterization of RS and ES is straightforward when the production function

satisfies homogeneity: both concepts are completely identified by the function’s degree

of homogeneity.

Result 8.4 If the production function satisfies f ∈ Hh, then EP
(
l, k
)
= h for any(

l, k
)
.

By definition EP
(
l, k
)
:=

d ln f(α;l,k)
d lnα

⌋
α=1

, and it can be expressed as
df(αl,αk)

dα
α

f(α;l,k)
like any other elasticity.

Moreover, by the fact that f ∈ Hh then f (αl, αk) = αhf (l, k) and so
df(αl,αk)

dα
= hαh−1f (l, k). Therefore,

EP
(
α; l, k

)
= hαh−1f (l, k) α

f(αl,αk)
⇒ EP

(
α; l, k

)
= hαhf (l, k) 1

f(αl,αk)
⇒ EP

(
α; l, k

)
= h.
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Result 8.5 Suppose the production function satisfies f ∈ Hh. Then, EP
(
l, k
)
=

h = 1
ES(w,r,q)

for any
(
l, k
)
.

There is an equivalence between EP and ES when f ∈ Hh and we evaluate EP at the optimal values.

df(αl,αk)
dα

α
f(α;l,k)

=
[
∂f(αl,αk)

∂(αl)
l +

∂f(αl,αk)
∂(αk)

k
]

α
f(α;l,k)

and evaluating at α = 1, we obtain that
d ln f(αl,αk)

d lnα

⌋
α=1

=[
∂f(l,k)

∂l
l+

∂f(l,k)
∂k

k
]

1
f(l,k)

Also, at the optimal inputs, the FOCs give
∂f(l∗,k∗)

∂l
λ∗ = w and

∂f(l∗,k∗)
∂k

λ∗ = r. So,

d ln f(αl,αk)
d lnα

⌋
α=1

=
[

w
λ∗ l

∗ + r
λ∗ k

∗] 1
f(l,k)

⇒ d ln f(αl,αk)
d lnα

⌋
α=1

= wl∗+rk∗
λ∗f(l,k)

since we have that λ∗ is the marginal cost and wl∗+rk∗
f(l∗,k∗) the average cost. Thus, since f (l∗, k∗) = q, then

⇒ d ln f(αl,αk)
d lnα

⌋
α=1

=
AC(w,r,q)
MC(w,r,q)

= 1
ES(w,r,q)

.

Using these results, we conclude that ES = 1 when h = 1, which in turn implies that

the technology exhibits CRS. This is why researchers usually refer to a unitary elasticity

of scale and CRS as if they were synonyms.

8.5 Increasing Returns to Scale (IRS)

We have stated that any technology exhibits IRS if ES > 1. For the particular case of

homogeneous technologies, this occurs when the degree of homogeneity is greater than

one. A Cobb Douglas with βl + βk > 1 constitutes an example. However, depending on

the type of analysis we perform, assuming this type of technology could make undesirable

results emerge.

For example, consider a firm with a Cobb Douglas exhibiting IRS. Suppose that it is

deciding its production and does so with the goal of maximizing profits. A Cobb Douglas

with IRS implies that the more a firm produces, the lower its marginal costs. Hence, the

firm would always have incentives to increase its production, determining that the only

possible solution is to produce infinite output. When we translate this type of technology

to the characterization of an industry, it would entail that only one firm would operate

in the market.

However, a technology with decreasing marginal costs is only one type of IRS tech-

nology. Another case is when a firm has fixed costs of production. Fixed costs are, by
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definition, costs that are independent of the quantity produced. An example of this is

the rent paid by a clothing store to sell shirts—this cost is independent of the level of

production, and the store cannot make sales if it does not incur it.

To formalize this, suppose a technology that uses labor as the only production factor.

Suppose that the firm requires hiring a fixed number of workers δ to produce positive

quantities. After this, one unit of labor produces one unit of output. The production

function of this case is

f (l) :=

 l − δ if l ≥ δ

0 otherwise
.

The technology reflects that any quantity of labor l < δ results in zero quantities,

since the firm cannot cover the minimum labor required to produce. However, one unit

of labor produces one unit of output as soon as l > δ, which is reflected in df(l)
dl

= 1 if

l ≥ δ.

The function f is not homogeneous, and so we need to use the definition of IRS

to check that the property holds. With this goal, we first show that f is indeed not

homogeneous.

The definition of homogeneity is f (αl) = αf (l) for any α > 0. This means that if we can find an α where this does

not hold, then f is not homogeneous. To see this, note that

f (αl) =

 αl − δ if αl ≥ δ

0 otherwise
.

Take l > δ and choose α such that αl > δ. Then,

f (αl) = αl − δ ̸= α (l − δ) = αf (l) ,

which proves our claim.

To show that there are IRS, we can show that ES > 1.3The CMP for q > 0 requires

that l > δ, because otherwise the firm cannot produce positive quantities. Thus, the

3Although we have stated the relation for homogeneous technologies, this is actually true as long as
the input choices are the solution to the CMP.
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CMP is

min
l

C = wl

subject to q = l − δ,

which shows that the CMP is trivial when there is only one production factor—its

constraint identifies the solution:

l∗ (q) = δ + q,

and so the minimum cost for q > 0 is

C∗ (w, q) := w (δ + q) .

From this, we obtain that MC (w) := w and AC (w) = w(δ+q)
q

. And since MC(w)
AC(w)

=

wq
wδ+wq

< 1, then MC < AC and so there are ES. We could have also obtained the

same conclusion by using that ∂AC(w)
∂q

= − wδ
(q)2

< 0 and checking that average costs are

decreasing.

Alternatively, we could have shown that there are IRS through the elasticity of production. Let α > 0. Then,

f (l) :=

 αl − δ if αl ≥ δ

0 otherwise
,

with for l ≥ δ implies

∂f (αl)

∂α

α

f (αl)
= l

α

αl − δ
=

1

1− δ
lα

> 1,

and so there are IRS.
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8.6 Exercises

[1] Consider the baseline case of IRS with fixed costs, analyzed in the lecture note.

A simplifying assumption I made was that one unit of labor produces one unit of

output. Let’s incorporate a parameter φ that captures the productivity of workers.

This parameter affects how easily they can produce the good. Nonetheless, φ does

not affect the labor necessary to produce positive quantities, which is still δ (i.e.,

it does not affect the fixed cost). Thus, the production function is

f (l) :=

 φl − δ if l ≥ δ

0 otherwise
.

(a) Show that my claim of φ capturing productivity is in fact true. How can φ

be specifically interpreted? (that is, “read” the expression you have used to

show that φ is indeed a productivity term).

(b) Write down and solve the cost minimization problem for q > 0.

(c) Do increases in productivity reduce total costs, marginal costs, and average

costs, as we would expect?

(d) Show that the technology exhibits CRS when δ → 0. Interpret.

[2] Bart and Milhouse want to gather some money to watch the new Krusty’s movie.

With this goal, they start selling lemonades in the street by using Marge’s recipe.

This combines one lemon and a quarter liter of mineral water. The cost of one

lemon and one liter of water is the same and equals 1 dollar.

(a) Establish the production function describing the technology for glasses of

lemonade. Show it displays CRS.

(b) Bart and Milhouse treat the business quite seriously and behave as cost min-

imizers. What is the total cost of producing q glasses?

(c) What is the proportion of expenditure in lemons and water relative to total

cost? What are these proportions if the prices of lemons increase to 2 dollars?
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(d) Suppose you’re a customer. Like any customer, you don’t have information

on the production technology they use. In particular, you don’t know that

they use Marge’s recipe for the lemonades. While you’re talking to Milhouse,

he reveals that the expenditure proportion is the one computed in c). In

addition, he tells you that those proportions are independent of how many

glasses they produce and sell. Those are the only pieces of information you

have about the technology they use.

i. Would you have concluded that the production function is necessarily the

same as in a)? If your answer is no, mention one production function also

consistent with the information at your disposal.

ii. Keep assuming what Milhouse told you about the cost shares. Last week,

you bought one glass and noticed that the lemonade was watered down.

Since the price of lemons has risen, you suspect that the mischievous Bart

has used more water and less lemon per glass. In fact, you have noticed

that every time the price of the lemons rises, the lemonade has more

water than usual.

1. What kinds of production functions we saw in class are consistent

with this information?

2. Suppose that you come back the following week, and complain to

Milhouse that last week’s lemonade had too much water. Milhouse

shows you the receipts of mineral water and lemons bought, which

indicate that each input’s cost share has not changed. Is this enough

argument to show that you’re wrong? Explain your answer by using

a production function.

[3] (I’ll solve this one in class) Nike has been one of the pioneers in outsourcing

production to the developing world, establishing factories all around Asia. How-

ever, things are changing nowadays: wages in Asia have been rising (although they
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remain low). Due to this, Nike has started to look at cheaper production alter-

natives. The following excerpt is from an article of the Financial Times, touching

upon the subject.

“The very-low labour costs in Asia are no longer that low unless you go to Africa or

somewhere else . . . The pressure has been mounting for a long time to either move

to a super low-cost place or automate more... That has come to a point where

people are more seriously looking to automation.”

By the title and the excerpt, we can envision two production modes.

Figure 8.1. Production Modes

(a) Mode 1 (b) Mode 2

The mode 1 (picture 8.1a) corresponds to a typical Nike’s factory in Asia (in this

case, Vietnam), where low-skilled workers manually produce shoes. This is the

current predominant technology. The mode 2 (picture 8.1b) is the typical factory

that Nike aims to have in the next years. It is capital intensive and needs of high-

skilled workers.

In this exercise, we want to model Nike’s production function for shoes. There are

three factors: capital, low-skilled workers, and high-skilled workers. Let K, L and

H be the units of each factor employed, with prices r, wL and wH . We first model

each mode of production separately, and then combine them into one production

function.
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(a) Mode 1 requires only low-skilled workers, with 10 workers producing one pair

of shoes. Write down a function that captures this technique.

(b) Mode 2 consists of high-skilled workers designing and operating machines.

The production of one pair of shoes requires one machine and two workers

(one worker that designs the machine, and another that operates it). Write

down a function that captures this technique.

(c) Establish Nike’s production factory for shoes assuming that Nike can poten-

tially produce with mode 1 or mode 2 technology.

(d) According to the article, Nike still uses the first mode of production since

automation is an expensive alternative these days. Determine what condition

wL has to satisfy to be consistent with Nike using the first mode to minimize

costs.
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9.1 Introduction

In these notes, we present typical production functions used in the literature. Our focus

is on the implications that these technologies have when we analyze the CMP, with

special emphasis on technologies exhibiting CRS. We study specific functional forms,

including perfect complements, perfect substitutes, and the Cobb Douglas. We do this

briefly, since the mathematical derivations are the same as in consumer theory.

We then introduce one new functional form not covered in consumer theory, known

as the constant elasticity of substitution (CES) production function. This constitutes a

generalization of the other production functions, since it converges to the cases of per-

fect complements, perfect substitutes, and Cobb Douglas, depending on the parametric

version we use. Although you do not have to know how the solution of the CES is ob-

tained (the algebra is quite messy), I want you to learn its properties and when its use

is appropriate.

9.2 CRS with Homogeneous Functions

Consider a production function that is homogeneous of some degree. CRS arises for these

types of technologies when they are in particular homogeneous of degree one (aka linear

homogeneity). Formally, f satisfies that f (αl, αk) = αf (l, k) for any α > 0. Intuitively,

it means that the output increases in a proportion α when all the inputs increase in a

proportion α.

When we deal with a utility function, any monotonic transformation of it represents the same preferences. Consumer’s

ranking of products is all what we need to know and, so, the values attached to utility are meaningless.

On the other hand, when we deal with production functions, quantities and costs have an explicit unit of measure.

As a result, monotone transformations do not represent the same production function. This is why we defined

CRS production functions as functions which are homogeneous of degree one instead of allowing for any monotone

transformation and, hence, defining them as homothetic functions.

There are several properties that the solution to CMP satisfies when the technology

exhibits CRS. The first property is related to the optimal demand of factors.
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1. Input demands are linear in q. Let each factor demand for one unit of product

be a∗l (w, r) := l (w, r, 1) and a∗k (w, r) := k (w, r, 1).

Then, l∗ (w, k, q) = qa∗l (w, r) and k∗ (w, k, q) = qa∗k (w, r).

(OPTIONAL) The proof consists in rewriting the optimization problem in terms of one unit of product. This

includes rewriting both the objective function and the constraint.

The optimization problem is

min
l,k

C = wl+ rk subject to f (l, k) = q

We use that since the production function has CRS, then f (αl, αk) = αf (l, k) for any α > 0. One trick used when

we have a linearly homogeneous function is defining α in such a way that it expresses the arguments of the function

in a specific way.

Take in particular, α := 1
q
so that f

(
l
q
, k
q

)
=

f(l,k)
q

. The constraint f (l, k) = q is equivalent to
f(l,k)

q
= 1 and so

it can be reexpressed as f
(

l
q
, k
q

)
= 1.

Moreover, we know that if we apply a monotone transformation to the objective function, we would still obtain

the same solution. Keep in mind that the objective function would change its value, but this does not affect the

optimization problem. Thus, by dividing by q we can express the total cost as an average cost: C
q

= w l
q
+ r k

q
.

Then, the optimization problem becomes

min
l,k

C

q
= w

l

q
+ r

k

q
subject to f

(
l

q
,
k

q

)
= 1

Define al :=
l
q
, ak := k

q
and c := C

q
. Then, the optimization problem can be even expressed as,

min
al,ak

c = wal + rak subject to f (al, ak) = 1. (9.1)

Notice c was originally defined as the average cost. But, given how we wrote the optimization problem, it is also

the solution to the problem when q = 1. If we forget about the definitions of each variable, (9.1) is just a change of

variables with the constraint defined for q = 1.

The result implies that the optimization problem can be solved by finding the choice of inputs to produce q = 1,

which we denote a∗l (w, r) and a∗k (w, r), and then recovering optimal input choices for any q by using the definition

of the a’s. This deermines that l∗ (w, r, q) = qa∗l (w, r) and k∗ (w, r, q) = qa∗k (w, r) .

The property states that factor demands are proportional to q. Due to this, each can

be expressed as the factor necessary to produce one unit of the good times the number

of goods to produce. Thus, the optimal demands of factors can be fully characterized by

simply knowing the factor demands for one unit of the good.

The second property that they satisfy is related to the value function (i.e. the mini-

mum cost function).

2. Minimum costs are linear in q. Let c∗ (w, r) := C∗ (w, r, 1) be the minimum cost

to produce one unit of the good.

Then, C∗ (w, r, q) = qc∗ (w, r).
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By definition, the minimum cost function is C∗ (w, r, q) = wl∗ (w, r, q) + rk∗ (w, r, q). Also, we have shown that the

optimal inputs demands are l∗ (w, k, q) = qa∗l (w, r) and k∗ (w, k, q) = qa∗k (w, r). Thus,

C∗ (w, r, q) = w
[
qa∗l (w, r)

]
+ r

[
qa∗k (w, r)

]
⇒ C∗ (w, r, q) = q

[
wa∗l (w, r) + ra∗k (w, r)

]
⇒ C∗ (w, r, q) = qc∗ (w, r) where c∗ (w, r) := C∗ (w, r, 1).

Just like with the optimal demand of factors, the result states that the minimum cost

function is fully characterized by the costs along one isoquant. Thus, given the costs

when q = 1, denoted by c∗ (w, r), the total cost to produce q units is qc∗ (w, r).

Summing up, Property 1 and 2 imply that, when the technology displays CRS, the

solution for one unit of the product completely characterizes both the factors demands and

the minimum costs, for any level of output—the relation of each is always proportional.

The next result follows as a corollary of these two properties, and it simply follows by

the proportional relation with q.1

3. Optimal marginal costs, average costs and unitary costs are equal. For-

mally, it means that ∂C∗(w,r,q)
∂q

= C∗(w,r,q)
q

= c∗ (w, r).

By taking the derivative of C∗ (w, r, q) = qc∗ (w, r) with respect to q, we get
∂C∗(w,r,q)

∂q
= c∗ (w, r). Then, by using

that C∗ (w, r, q) = qc∗ (w, r) we have that
C∗(w,r,q)

q
= c∗ (w, r).

Expressed in words, marginal costs and average costs are equal when a technology

displays CRS, and both in turn equal the costs of producing one unit of the good.

The last property we present states that, when the technology exhibits CRS, the

expenditure share of an input is only affected by the input prices, but not by the level of

production. This comes in handy when a researcher works empirically, where we usually

do not have information about quantities and prices of each input used. Instead, we

observe the total expenditure on each input.

4. Expenditure shares of factors are independent of the scale of production.

Let the expenditure share be defined as the expenditure relative to total costs. Formally

1In fact, any linear function has the property that its elasticity is unitary. In this case, notice that we

are saying that ∂C∗(w,r,q)
∂q = C∗(w,r,q)

q . Hence, ∂C∗(w,r,q)
∂q

q
C∗(w,r,q) = 1 and the LHS is just the definition

of an elasticity. This can be even seen by ∂ ln C∗(w,r,q)
∂ ln q = 1.
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s∗l (w, r) :=
wl∗(w,r,q)
C∗(w,r,q)

=
wa∗l (w,r)

c∗(w,r)
. If there are CRS, then s∗k (w, r) :=

rk∗(w,r,q)
C∗(w,r,q)

=
ra∗k(w,r)

c∗(w,r)
.

Let’s prove the result for labor. The proof for capital is analogous. The optimal labor demand is l∗ (w, r, q) =

qa∗l (w, r). Multiplying both sides by w,

wl∗ (w, r, q) = qwa∗l (w, r),

and dividing both sides by C∗ (w, r, q),

wl∗(w,r,q)
C∗(w,r,q)

=
qwa∗

l (w,r)

C∗(w,r,q)
,

and replacing in the RHS for C∗ (w, r, q) = qc∗ (w, r),

wl∗(w,r,q)
C∗(w,r,q)

=
wa∗

l (w,r)

c∗(w,r)
.

An implication of this result is that, irrespective of whether a firm produces a little

or a lot, the expenditure share of each factor is always the same when the factor prices

do not change. This can simplify the problem analyzed, but unfortunately it also rules

out some common scenarios. For instance, it cannot reflect that big firms usually spend

proportionally more on capital or high-skilled workers, relative to small firms.

9.3 Homogeneous Technologies with CRS

Next, we investigate some specific functional forms that satisfy CRS, including the Cobb

Douglas, Leontief, and a linear production function. To provide a solution for each case,

we build on the solution used in the EMP of consumer theory. Recall that the EMP of

consumer theory and the CMP in firm theory are equivalent. Due to this, the focus will

be primarily on the interpretations of these functions in the context of firm theory.

The analysis concludes by studying one more functional form, not covered in con-

sumer theory: the CES production function. For some values of parameters, the CES

collapses to the previous three cases, thereby constituting a parsimonious technology

representation.
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9.3.1 Cobb Douglas

Suppose that the production function is a Cobb Douglas

min
l,k

C= wl + rk

subject to q = lβlkβk ,

where βl + βk = 1 to ensure that the technology exhibits CRS.

The Cobb Douglas f (l, k) := lβlkβk satisfies f ∈ Hβl+βk and so it is a homogeneous function. It defines IRS, DRS

or CRS depending if βl + βk > 1, < 1 or = 1, respectively.

CRS require that the production function is homogeneous of degree one. Hence, we cannot use the Cobb Douglas

specification with a logarithmic transformation. This is in contrast to what we could do with utility functions.

Formally, the Cobb Douglas specification has to be f (k, l) = kβk lβl which is homogeneous of degree one if βk+βl = 1.

On the contrary, f (k, l) = βk ln k + βl ln l does not satisfy the property of CRS.

Some people specify the Cobb Douglas production by f (k, l) = exp (βk ln k + βl ln l). This f is the same Cobb

Douglas given by kβk lβl . The expression is obtained by applying logs and exps to kβk lβl which cancel out. Thus,

it is not a monotone transformation but a way to rewrite kβk lβl .

Sometimes, the Cobb Douglas production function includes a parameter A > 0 such that f (k, l) = Alβlkβk . This

parameter is known as Hicks-neutral technological improvements. It reflects variations in productivity that do not

affect the optimal input choices.

By solving the optimization problem, we obtain

l∗ (w, r, q) = q

(
βl

βk

r

w

)βk

,

k∗ (w, r, q) = q

(
βk

βl

w

r

)βl

.

The Lagrangian is:

L := wl+ rk + λ
[
q − lβlkβk

]
and the FOCs are:

L ′
l = βl (l)

βl−1 kβk − λw = 0

L ′
k = βk (k)βk−1 lβl − λr = 0

L ′
λ = q − lβlkβk = 0

Like for any solution that involves a Cobb Douglas, we divide the first two equations so that βl
βk

k
l
= w

r
. From this,

we obtain an expression for k as a function of l: k = βk
βl

w
r
l.

Plugging in this expression into L ′
λ = 0:

q − lβlkβk = 0⇒ q − lβl

(
βk
βl

w
r
l
)βk

= 0⇒ q − lβl+βk

(
βk
βl

w
r

)βk
= 0
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and using that βl + βk = 1, then we can determine that l∗ (w, r, q) = q
(

βl
βk

r
w

)βk
.

Likewise, we use that k = βk
βl

w
r
l and so k∗ (w, r, q) =

(
βk
βl

w
r

)
l∗ (w, r, q). This determines that k∗ (w, r, q) =

q
(

βk
βl

w
r

)βl

Using the notation we used in Property 1 for the general case of CRS, the demand

of factors for one unit of production is a∗l (w, r) :=
(

βl

βk

r
w

)βk

and a∗k (w, r) := q
(

βk

βl

w
r

)βl

.

Likewise, the minimum cost function is

C∗ (w, r, q) = q

(
w

βl

)βl
(

r

βk

)βk

By definition, E∗ (p1, p2, U0) = p1h∗
1 (p1, p2, U0) + p2h∗

2 (p1, p2, U0). Hence,

E∗ (p1, p2, U0) = p1U0

(
α1
α2

p2
p1

)α2
+ p2U0

(
α2
α1

p1
p2

)α1

⇒ E∗ (p1, p2, U0) = U0

[
p1
(

α1
α2

p2
p1

)α2
+ p2

(
α2
α1

p1
p2

)α1
]

⇒ E∗ (p1, p2, U0) = U0

[
(p1)

1−α2

(
α1
α2

)α2
(p2)

α2 + (p2)
1−α1

(
α2
α1

)α1
(p1)

α1

]
By using that α1 + α2 = 1, then α2 = 1− α1 and α1 = 1− α2. Therefore,

E∗ (p1, p2, U0) = U0

[
(p1)

α1

(
α1
α2

)α2
(p2)

α2 + (p2)
α2

(
α2
α1

)α1
(p1)

α1

]
⇒ E∗ (p1, p2, U0) = U0 (p1)

α1 (p2)
α2

[(
α1
α2

)α2
+
(

α2
α1

)α1
]

Finally, using that
(

α1
α2

)α2
+
(

α2
α1

)α1
=
(

α1
α2

)α2
+
(

α2
α1

)1−α2
we can reexpress the RHS(

α1
α2

)α2
+
(

α2
α1

)(
α1
α2

)α2
⇒

(
α1
α2

)α2
(
1 + α2

α1

)
⇒

(
α1
α2

)α2
(

α1+α2
α1

)
⇒ (α1)

α2−1 (α2)
−α2 which is just(

1
α1

)α1
(

1
α2

)α2
.

Thus, E∗ (p1, p2, U0) = U0 (p1)
α1 (p2)

α2

[(
α1
α2

)α2
+
(

α2
α1

)α1
]
becomes

E∗ (p1, p2, U0) = U0 (p1)
α1 (p2)

α2

(
1
α1

)α1
(

1
α2

)α2
which gives the result.

Using the notation of Property 1 again, this means that the unit cost is

c∗ (w, r) :=

(
w

βl

)βl
(

r

βk

)βk

Notice that simultaneously applying a log and exp transformation to c∗ does not affect

c∗. However, it results results in expression commonly used in academic articles, which

is

c∗ (w, r) := exp

[
βl ln

(
w

βl

)
+ βk ln

(
r

βk

)]
.

Finally, the share of labor and capital expenditures relative to total cost are defined

as s∗l (w, r, q) :=
wl∗(w,r,q)
C∗(w,r,q)

and s∗k (w, r, q) :=
rk∗(w,r,q)
C∗(w,r,q)

. In the case of Cobb Douglas, they
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are equal to

s∗l (w, r, q) = βl,

s∗k (w, r, q) = βk.

This implies that the expenditure shares for each input are constant under a Cobb

Douglas.

Notice that the share of input expenditure gives us another way to express each optimal input demand since

l∗ (w, r, q) =
s∗l (w,r,q)C∗(w,r,q)

w
and k∗ (w, r, q) =

s∗k(w,r,q)C∗(w,r,q)

r
. In principle, the terms on the RHS could

be obtained.

Keep in mind that the shares s∗l and s∗k never depend on q under any CRS technology.

As we indicated above, this implies that big and small firms have the same cost shares.

However, the Cobb Douglas additionally implies that the factor shares neither depend

on (w, r). This adds more structure to problem relative to technologies with CRS, ruling

out some scenarios that we can observe in reality. For instance, it entails that the cost

shares of labor and capital are the same in a country with cheaper labor like China as

in a country like the USA.

9.3.2 Leontief Function (Perfect Complements)

Just like in consumer theory, the Leontief function describes technologies with inputs

that are perfect complements. The optimization problem is then

min
l,k

C= wl + rk

subject to q = inf

{
l

al
,
k

ak

}
.

The production function exhibits CRS since f (αl, αk) = inf
{

αl
al

, αk
ak

}
and we have that αl

al
≶ αk

ak
iff l

al
≶ k

ak
.

Hence, inf
{

αl
al

, αk
ak

}
= α inf

{
l
al

, k
ak

}
which equals αf (l, k).

The Leontief production function has a similar interpretation as in consumer theory.

In particular, al and ak are the requirements of each factor to produce one unit of the

good. This implies that a firm obtains one unit of the good when both l = al and k = ak.
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What happens if the firm is having inputs l = al and k = ak, and suddenly increases

the amount of one factor in isolation? The minimum would still be one, and so the quan-

tities produced would remain the same—there is no possibility of substitution between

factors, since both are essential. Both factors need to increase simultaneously and in a

proportion al and ak to increase production.

One example of a Leontief production function is a recipe to prepare some dessert. Imagine you want to prepare a

brownie cake and have found on the internet that you need 0.5 kgs of cocoa powder, 2 eggs and 0.25 liters of milk.

Denote C, E and M the quantity you are going to buy of each input. The requirements to produce one brownie

cake are aC := 0.5, aE := 2 and aM := 0.25. Thus, the production function is

f (C,E,M) := inf

{
C

0.5
,
E

2
,

M

0.25

}
Notice that if you buy C = 0.5, E = 2 and M = 0.25, then you can produce one brownie cake. If you decide to buy

more of any input in isolation, for example you buy three eggs, then the additional egg is not going to increase the

number of brownie cakes you would get. You would still be getting one brownie cake.

Following the intuition provided in consumer theory, an optimal solution needs to

satisfy that the arguments in inf
{

l
al
, k
ak

}
are equal, so that l

al
= k

ak
. If we instead

increase one of the inputs, then the product would remain the same but the firm would

have higher costs. Thus, any pair of factors with l
al
̸= k

ak
cannot be part of a solution to

the CMP.

Since both arguments have to be equal, the constraint can be written as

q = inf
{

l
al
,
(

akl
al

)
1
ak

}
, giving as solution

l∗ (q) = alq,

k∗ (q) = akq,

and so

C∗ (w, r, q) = q (wal + rak) .

Notice that, consistent with the idea that there is no substitution between factors,

changes in wages or in the remuneration to capital do not change the demand for factors.

This arises since factors are perfect complements, so that the firm cannot increase its

production by just substituting a more expensive factor for another cheaper one.
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9.3.2.1 Some Examples Covered by a Leontief Technology

We provide two scenarios where using a Leontief technology is appropriate. This requires

identifying situations where inputs have to be combined in a specific proportion.

The first example is intuitive and really simple: a call center. Providing service to

a customer needs at least one person with one phone (presumably, it also requires a

computer). Thus, al = ak = 1, which reflects that a person without a phone or a phone

without a person cannot provide service to a customer.

A second example occurs when production takes place in stages. This entails that

inputs are transformed during the production process, until the final product is created.

For example, the production of cell phones requires building all all the parts and then

assemble them. This two-stage process can be captured by a Leontief technology.

To see this, suppose that the production of cell phones requires producing an n

numbers inputs, where the unitary requirement of input j is aj for j = 1, 2, ..., n. After

this, the inputs are assembled to produce one cell phone by using al workers. Then,

letting ij and l respectively denote input j and labor, we can represent the production

function by

inf

{
i1
a1

,
i2
a2

, ...,
in
an

,
l

al

}
.

Summing up, we use a Leontief technology to describe the production process of a

firm when two conditions are met: each input is essential and there is no possibility of

substitution between them.

9.3.3 Perfect Substitutes

For the following production function, we change the type of factors under considera-

tion. The goal is to show that production theory is flexible enough to capture different

phenomena, depending on what we want to model.

One area where production functions are relevant is income distribution. Technolo-

gies determines the remuneration of each factor, including wages, which is the main
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determinant of income for a vast part of the population. By thinking of how different

policies and shocks affect the production process, we can then infer the impact on income

distribution.

Some decades ago (actually, more like a century ago), models were using capital

and labor as the production factors. The goal was to analyze the distribution of income

between entrepreneurs (i.e. owners of capital) and workers. The distinction was suitable,

since labor was a more or less homogeneous factor. Thus, tensions regarding income

distribution were mainly between workers and owners.

Lately, differences between workers have become more pronounced, making differ-

ences between wages of workers become more disparate. Papers have started to recognize

this, analyzing the phenomenon by assuming low-skilled (LS) and high-skilled workers

(HS) as production factors. Next, we provide an example based on this classification.

9.3.3.1 The CMP

Suppose there are two techniques to produce a good. To get one unit of output, the first

technology only requires aH units of HS workers (no LS workers), while the second one

only aL units of LS workers (no HS workers).2 Denote the HS and LS workers hired by

the firm by H and L, respectively. Then, the firm’s technology can be captured through

f (L,H) :=
L

aL
+

H

aH
,

where the production function exhibits CRS, since f (αL, αH) = αL
aL

+ αH
aH

=

α
(

L
aL

+ H
aH

)
= αf (L,H).

As in the case of the Leontief production function, we have expressed the function by defining parameters aH and

aL that define the necessary units of inputs to produce one unit of the good. It is also common to specify the

production function by:

f (H,L) := φHH + φLL

where φH := 1
aH

and φL := 1
aL

. In this case, φi indicates the marginal productivity of a typical worker having

skills i. This means, that φi is the units of output that one unit of labor with skill i would produce. For example,

if you need 2 units of H to produce one unit of the good, so that aH := 2, you are also saying that one unit of H

2I units of the factor as the measure unit since it depends how we measure them. It could be hours
or number of people.
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produces φH := 1
2
of output.

Let wH and wL be the wages of HS and LS respectively. The CMP is

min
L,H

C= wLL+ wHH

subject to q =
H

aH
+

L

aL

There are two different ways to produce the q units of the good: either by only hiring

HS workers or by only hiring LS workers. Since the firm’s goal is to minimize cost, it

will choose the less expensive technique. If both methods entail the same cost, then any

combination is a solution to the CMP.

To obtain the solution, we proceed as in consumer theory with perfect substitutes. We assume that the solution is

at a corner. Then, we obtain the conditions to make each a solution, by using that the solution has to provide the

minimum cost.

Suppose L∗ = 0. Using the constraint equation, H∗ = qaH and hence C∗ = qwHaH . Similarly, if H∗ = 0, then

L∗ = qaL and C∗ = qwLaL.

The combination L∗ = 0 and H∗ = qaH is the unique solution when it represents the lowest cost. Thus, it has to

satisfy that qwHaH < qwLaL, or, what is same, wH
wL

< aL
aH

.

By the same token, the combination H∗ = 0 and L∗ = qaL is a solution when wH
wL

> aL
aH

.

In case that wH
wL

= aL
aH

, both combinations are a solution. But, also, any combination that produces in total

q is so. Thus, given a value L∗ ∈ [0, qaL] H∗ is pinned down by the fact that production equals q, so that,

H∗ =
(
q − L∗

aL

)
aH .

Summing up, the solution is

L∗ (wH , wL, q) :=


qaL if wH

wL
> aL

aH

0 if wH

wL
< aL

aH

[0, qaL] if wH

wL
= aL

aH

,

H∗ (wH , wL, q) :=


0 if wH

wL
> aL

aH

qaH if wH

wL
< aL

aH(
q − L∗

aL

)
aH if wH

wL
= aL

aH

,

and the minimum cost function is

C∗ (wH , wL, q) :=


qaLwL if wH

wL
> aL

aH

qaHwH if wH

wL
< aL

aH

qaHwH if wH

wL
= aL

aH

.
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Notice that wHaH = wLaL when wH

wL
= aL

aH
, and so saying that the minimum cost is either

qwHaH or qwLaL is equivalent. Furthermore, we can write the minimum cost in a more

compact way:

C∗ (wH , wL, q) := qinf {wLaL, wHaH}.

Although it is not necessary for the solution, we should suppose that aL > aH to

be consistent with our interpretation of workers of different skills. This means that

producing one unit of output with LS requires more LS workers than if that unit of

output is produced with HS workers. In that way, we capture that HS workers are more

productive than LS workers.

Would a firm choose producing with LS workers if HS workers are more productive?

For this to occur, LS workers need to have a low wage relative to HS. Formally, wL

wH
has to

be sufficiently low. This type of phenomenon could arise in the apparel industry. North

American firms might produce in Asia or Mexico, where labor is cheaper, even though

their workers are potentially less productive than the ones in USA or Canada (see the

case of Nike in the Problem Set).

9.3.4 CES (Constant Elasticity of Substitution) Production

Function

The CES is a production function belongs to the group of well-behaved technologies,

such as the Cobb Douglas. Nonetheless, unlike this one, its expenditure shares are not

independent of the factors prices.

Remark
For the CES case, I want you to focus on the properties of the solution

to the CMP, rather than how to solve it. The algebra is a little bit messy, without

providing much insight.
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We keep using LS and HS workers as the production factors. The CMP is

min
L,H

C= wLL+ wHH

subject to q =
(
(φL)

1
γ (L)

γ−1
γ + (φH)

1
γ (H)

γ−1
γ

) γ
γ−1

,

where the parameters φL and φH reflect each factor’s productivity.

There are two important properties that the CES has. First, it displays CRS. Second,

it converges to the three production functions we have covered, depending on the value

of γ:

� if γ → 0, the CES converges to the Leontief production function.

� if γ → 1, the CES converges to the Cobb Douglas production function.

� if γ → ∞, the CES converges to the linear production function.

The term “CES” reflects that the degree of substitution between inputs is constant and

given by the parameter γ. It is such that the higher γ is, the greater the substitutability

between inputs, which is equivalent to a lower the complementarity.

The case with γ → 0 represents perfect complelementary. Likewise, inputs are im-

perfect complements when γ ∈ (0, 1), which means that they are complements, but not

required in a fixed proportion. Finally, inputs are imperfect substitutes when γ > 1, and

perfect substitutes in the limit case where γ → ∞.

Since we can interpret a lower complementarity as a higher degree of substitutability,

we can say that γ controls the substitutability. This is important from an empirical point

of view. Sometimes we do not want to directly assume that inputs are substitutes or

complements. This is implicitly done when we suppose a Leontief or a linear production

function. Rather, we want the data to tell us how inputs behave, and the CES allows us

to do this by inferring the information through estimating γ.

Another advantage of the CES is that it is a well-behaved production function. There-
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fore, it can be solved by using the Lagrange technique. The solution is given by:

c (wL, wH) :=

(∑
l∈L

φlw
1−γ
l

) 1
1−γ

,

C (q, wL, wH) := qc (w) ,

L∗ (q, wL, wH) := qφL

(
wL

c (wL, wH)

)−γ

= q
φL (wL)

−γ[
φL (wL)

1−γ + φH (wH)
1−γ] γ

γ−1

,

H∗ (q, wL, wH) := qφH

(
wH

c (wL, wH)

)−γ

= q
φH (wH)

−γ[
φL (wL)

1−γ + φH (wH)
1−γ] γ

γ−1

.

(OPTIONAL) The derivation is optional since it requires a lot of algebra and there is nothing really insightful in it.

I want you to know the results and implications of the CES production function.

The Lagrangian is:

L := wLL+ wHH + λ

[
q −

(
(φL)

1
γ (L)

γ−1
γ + (φH)

1
γ (H)

γ−1
γ

) γ
γ−1

]
and the FOCs are:

L ′
l = wL − λ

(
(φL)

1
γ (L)

γ−1
γ + (φH)

1
γ (H)

γ−1
γ

) γ
γ−1

−1

(φL)
1
γ (L)

γ−1
γ

−1
= 0

L ′
k = wH − λ

(
(φL)

1
γ (L)

γ−1
γ + (φH)

1
γ (H)

γ−1
γ

) γ
γ−1

−1

(φH)
1
γ (H)

γ−1
γ

−1
= 0

L ′
λ = q −

(
(φL)

1
γ (L)

γ−1
γ + (φH)

1
γ (H)

γ−1
γ

) γ
γ−1

= 0

Notice that the constraint can be expressed as

L ′
λ = q −

( L

(φL)
1

γ−1

) γ−1
γ

+

(
H

(φH )
1

γ−1

) γ−1
γ


γ

γ−1

= 0

Divide the first two equations, we obtain that:

wL
wH

=
(φL)

1
γ (L)

γ−1
γ

−1

(φH )
1
γ (H)

γ−1
γ

−1
which, using that γ−1

γ
−1 = −1

γ
, is equal to wL

wH
=

(
H

φH

) 1
γ(

L
φL

) 1
γ

. From this, we obtain a relation

between L and H:

⇒
(

wL
wH

)γ
=

H/φH
L/φL

note that (φL)
1
γ (L)

γ−1
γ ⇒ φL

(φL)
1− 1

γ

(L)
γ−1
γ ⇒ φL

(
L
φL

) γ−1
γ

so

q −
(
φL

(
L
φL

) γ−1
γ

+ φH

(
H
φH

) γ−1
γ

) γ
γ−1

= 0 ⇒ (q)
γ−1
γ = φL

(
L
φL

) γ−1
γ

+ φH

((
wL
wH

)γ
L
φL

) γ−1
γ

⇒ (q)
γ−1
γ = φL

(
L
φL

) γ−1
γ

+ φH

(
wL
wH

)γ−1 (
L
φL

) γ−1
γ ⇒ (q)

γ−1
γ =

(
L
φL

) γ−1
γ

[
φL + φH

(
wH
wL

)1−γ
]

⇒ (q)
γ−1
γ =

(
L
φL

) γ−1
γ
[
φL(wL)1−γ+φH (wH )1−γ

(wL)1−γ

]
⇒q =

(
L
φL

) [
φL(wL)1−γ+φH (wH )1−γ

(wL)1−γ

] γ
γ−1

and isolating L

L∗ (q, wL, wH) = q
φL(wL)−γ

[φL(wL)1−γ+φH (wH )1−γ ]
γ

γ−1

By symmetry of the problem, by just relabeling the variables, we can also obtain H∗:

H∗ (q, wL, wH) = q
φH (wH )−γ

[φL(wL)1−γ+φH (wH )1−γ ]
γ

γ−1

To determine the minimum cost, first let’s determine the total expenditure on each factor:

wLL
∗ (q, wL, wH) = qwL

[
φL(wL)−γ

[φL(wL)1−γ+φH (wH )1−γ ]
γ

γ−1

]
⇒ wLL

∗ (q, wL, wH) = q
φL(wL)1−γ

[φL(wL)1−γ+φH (wH )1−γ ]
γ

γ−1

From this we determine the minimum cost:

C∗ (q, wL, wH) := wLL
∗ (q, wL, wH) + wHH∗ (q, wL, wH)
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⇒ C∗ (q, wL, wH) := q

[
φL(wL)1−γ+φH (wH )1−γ

[φL(wL)1−γ+φH (wH )1−γ ]
γ

γ−1

]
From this we also determine that c∗ (q, wL, wH) :=

φL(wL)1−γ+φH (wH )1−γ

[φL(wL)1−γ+φH (wH )1−γ ]
γ

γ−1

In turn, the cost shares are:

s∗L (wL, wH) :=
φL (wL)

1−γ

φL (wL)
1−γ + φH (wH)

1−γ ,

s∗H (wL, wH) :=
φH (wH)

1−γ

φL (wL)
1−γ + φH (wH)

1−γ .

Since the cost share is defined by s∗L (q, wL, wH) :=
wLL∗(q,wL,wH )
C∗(q,wL,wH )

, using the results we got for wLL
∗ (q, wL, wH)

and C∗ (q, wL, wH), we establish that s∗L (wL, wH) =
φL(wL)1−γ

φL(wL)1−γ+φH (wH )1−γ .

Notice that now, unlike what happens with the Cobb Douglas, the costs shares are

not constant with a CES. Specifically, although cost shares still do not depend on the

quantities produced by the property of CRS, they do vary when the wages of each group

change. In particular, for LS workers (similar result for HS workers):

∂s∗L
∂wL

=
(1− γ)

wL

s∗L (1− s∗L) , which is < 0 if γ > 1,

∂s∗L
∂wH

=
(1− γ)

wH

s∗L (1− s∗L) , which is > 0 if γ > 1

(OPTIONAL) Taking the derivative:
∂s∗L
∂wL

=
(1−γ)φL(wL)−γ [φL(wL)1−γ+φH (wH )1−γ ]−φL(wL)1−γ(1−γ)φL(wL)−γ

[φL(wL)1−γ+φH (wH )1−γ ]2

⇒ ∂s∗L
∂wL

= (1− γ)
φL(wL)−γφH (wH )1−γ

[φL(wL)1−γ+φH (wH )1−γ ]2
< 0.

This can be reexpressed by:
∂s∗L
∂wL

= (1− γ) wL
wL

φL(wL)−γ

φL(wL)1−γ+φH (wH )1−γ
φH (wH )1−γ

[φL(wL)1−γ+φH (wH )1−γ ]

⇒ ∂s∗L
∂wL

=
(1−γ)
wL

s∗L s∗H , and since s∗H = 1− s∗L, the result follows.

Also, by the same token,
∂s∗L
∂wH

= (1− γ)
φL(wL)1−γφH (wH )−γ

[φL(wL)1−γ+φH (wH )1−γ ]2
and so

∂s∗L
∂wH

=
(1−γ)
wH

s∗L
(
1− s∗L

)
.

Keeping in mind that the case of γ > 1 represents perfect substitutes, we conclude

that increases on the wages of LS workers or decreases in the wages of HS workers

decrease the cost share of LS workers. Thus, substitutability is not only reflected in the

LS workers hired, but also in terms of their cost share.
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10.1 Introduction to Monopoly

In this lecture note, we develop a formal framework to identify what makes a firm

successful. Broadly speaking, firms can be leaders in their markets due to advantages on

the supply or the demand side. More specifically, one option is that firms can produce

goods more efficiently, resulting in lower costs than the rest of the firms. This translates

into a lower price, thereby gaining a better position in the market. Alternatively, firms

can produce goods that are appealing for consumers, thus allowing them to operate in

the market successfully.

In this note, we analyze these two sources that make a firm succeed. The goal is

twofold:

[1] to understand how firms make choices, according to the nature of a firm’s compar-

ative advantage. The decisions to be analyzed encompass quantities, prices, and

markups.

[2] to learn how to build a model.

Roughly speaking, to build a model we begin by establishing some assumptions about the

environment. Then, we specify the agents’ goals, what they know, and how they make

choices to pursue their objectives. Finally, we derive some predictions, and in this note

we do this by focusing on a comparative statics analysis. This methodology consists

in varying the exogenous conditions of the model, and investigate how the endogenous

variables react to it.

In this note, we proceed as follows. We start by presenting the baseline model, where

we describe a firm. Then, we analyze how firms make pricing and quantity decisions.

After this, we analyze how variations in efficiency and appeal impact a firm. Finally, we

translate this information into different strategies that a firm can deploy to succeed.
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10.2 The Baseline Model of Monopoly

Since our aim is to understand how firms make decisions, we keep the model as simple

as possible. In particular, we analyze one industry in isolation and suppose it comprises

only one firm.

Taking into account that we will consider an industry with only one firm, it is im-

portant to be clear about how a monopoly is defined. We usually tend to associate the

term monopoly with the existence of one firm in the market. However, this is a narrow

definition.1 A monopoly is defined as any firm that has some scope to increase its price

without losing its demand completely. Technically, we say that a monopoly does not

face an infinitely elastic demand.

Although a firm operating alone in a market quite likely satisfies this condition,

it is not the only possibility. For example, a firm active in an industry with multiple

competitors could charge a price higher than its marginal cost if its product is sufficiently

differentiated. A typical example is Apple with the iPhone in the cell phone industry.

In this sense, the results in these notes should be understood in a broad sense. They

are not only relevant for a monopoly, but actually aim to identify the decision process

of any firm that has some market power.

10.2.1 Setup

There is a single firm in the industry supplying one good. This firm has constant marginal

costs c and no fixed costs. Formally, the cost function is C (q) := cq, where q is the

quantity produced.

The total demand for the good is a function q (p;α) ∈ C2, where p ∈
[
p, p
]
is the

price and α ∈ R+ a parameter. The features of the good are exogenously given, and we

1In fact, the existence of only one firm in the market is not sufficient to have a monopoly. If
the barriers to entry are really low, the tacit competition that the firm faces could turn the industry
competitive. The same caveat applies to the case of an oligopoly with a small number of firms. For
instance, a competitive outcome would emerge when a duopoly competes in prices, in case goods are
homogeneous and both firms have the same marginal costs.
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assume that ∂q(p;α)
∂p

< 0, thereby ruling out Giffen goods.

We will refer to α as appeal. It reflects that consumers make consumption decisions

by comparing prices, but also other non-price aspects of the goods (e.g., quality, after-

sale services, etc.) Below, we will make assumptions consistent with this interpretation

of α (for instance, that a greater α increases demand).

Notice that by requiring α ∈ R+, we are implicitly assuming that all the tangible

and intangible features of the good can be reflected through a single measure. This is to

keep the model parsimonious.

10.2.2 A Digression: Elasticities

To get information on how prices affect demand, the firm could analyze the derivative

of the demand function with respect to prices. This provides information expressed in

units of each variable. However, we will see that a firm’s decisions ultimately depend on

the derivatives expressed in percentage variations. In other terms, it is the concept of

elasticity that matters for the firm.

The price elasticity of the demand is defined as εp (p;α) := −∂ ln q(p;α)
∂ ln p

. Recall that

there are three mathematical equivalent ways to expressing an elasticity, either

[1] −∂q(p;α)/q(p;α)
∂p/p

,

[2] −∂q(p;α)
∂p

p
q(p;α)

or

[3] −∂ ln q(p;α)
∂ ln p

.

The first one is the more intuitive. It shows that εp is the percentage variation in

quantities when there is a 1% variation in price. The elasticity has been multiplied by a

negative sign to express it in absolute terms: since ∂q(p;α)
∂p

< 0, then −∂q(p;α)
∂p

p
q(p;α)

> 0.

Although the first definition of elasticity provides a clear-cut interpretation, it is

usually the second and the third definitions that are used for calculations. In particular,

we will make extensive use of the logarithmic definition. The key to understanding

expressions like −∂ ln q(p;α)
∂ ln p

is treating the numerator and denominator like differentials.
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For example let’s take a function f (q) := ln q. Differentiating f we obtain df = f ′
q dq,

which implies that df = dq
q

since f ′
q = 1

q
. Using that df = d ln q, we conclude that

d ln q = dq
q
. This explains why the numerator in the first definition of elasticity can be

expressed as either dq(p;α)
q(p;α)

or d ln q (p;α).

10.2.3 Basic Assumptions

In this part, we state some basic assumptions about the relation of the quantity de-

manded with p and α. We will do it in terms of elasticities. In a later subsection, we

add assumptions that are necessary to get unambiguous comparative statics.

Regarding price, we have already stated that ∂q(p;α)
∂p

< 0, and so εp (p;α) > 0 for all

(p;α). The price elasticity provides information regarding the sensitivity of the quantity

demanded to price increases. Intuitively, it quantifies the the firm’s trade-off regarding

revenues, between a higher price and a lower demand.

Some terminology is in order. We say that the demand is inelastic when εp (p;α) <

1, whereas εp (p;α) > 1 defines an elastic demand. For the baseline model, we assume

that εp (p;α) > 1 for all (p;α). As a corollary, we rule out demands that are inelastic for

all prices.2

We have referred to α as appeal, but have not established assumptions that give

meaning to the label. There are two salient features that demand appeal should fulfill

to receive such denomination. First, it should be such that a greater appeal results

in an increase in demand. This is captured by ∂q(p;α)
∂α

> 0, or εα := ∂ ln q(p;α)
∂ lnα

> 0

in elasticity terms. It means that greater values of α increase the quantity demanded,

keeping the price fixed. Notice we remain agnostic about how appeal increases demand—

it could be either because old consumers demand more quantities or because the firm

starts selling to new customers.

The second feature is given by the relation of appeal with price. We could conceive

that a more attractive product not only increases the total quantities sold, but also affects

2In one of subsections, we outline the pricing decision of a firm when it faces an inelastic demand.
We do this as a digression.
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the sensitivity of the aggregate demand to price increases. For example, if a cell phone

is faster, has more memory, better resolution, longer warranty, etc., it is reasonable to

assume that a higher price reduces aggregate demand, but less so relative to a cell phone

without those characteristics.

This feature can be captured by a greater value of α reducing εp (p;α). Expressed in

words, it means that when a good has more appeal, the demand becomes less

price elastic (equivalently, more price inelastic). Formally, ∂εp(p;α)

∂α
≤ 0, allowing for the

possibility that appeal has a zero effect on the price elasticity. A zero effect could occur

for, example, if the firm improves its distribution channels to reach new consumers that

have the same valuation as the old ones. In that case, the quantities demanded would

increase, but the sensitivity of the aggregate demand to prices would not change–the

average sensitivity of the new consumers would be the same as the old ones.

Assumption 10.2.1. Summing up, we have assumed that:

� εp > 1

� εα (p;α) > 0 and ∂εp(p;α)

∂α
≤ 0.

We will need further assumptions in relation with ∂εp(p;α)

∂p
. However, these assump-

tions will be added later, since they require deriving additional results.

10.2.4 The Optimization Problem

The firm’s optimization problem is maximizing its profit by choosing price. Although the

firm also has to choose its supply, this is completely determined by the demand function

q (p;α), once the prices have been chosen—given the price chosen, the firm supplies a

quantity that equals its demand.

Remark
When we ignore strategic interactions, the firm could alternatively

choose quantities and let the price be determined by the condition of supply equal de-

mand. In that case, rather than using the direct demand q (p;α), we would make use

of the inverse demand p (q;α). In the absence of strategic interactions, nonetheless,
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both optimization problems provide the same characterization of prices

and quantities. It is only when strategic interactions are incorporated that we need

to distinguish between both, giving rise to the Cournot and Bertrand models.

Formally, the optimization problem is

max
p∈[p,p]

π (p;α, c) := q (p;α) (p− c) .

There are different assumptions guaranteeing that this is a well-behaved problem, in

the sense that a solution exists, is unique, and interior. When we did a math review in

the first classes of the course, I provided different conditions that we could use to ensure

this. However, consistent with how the literature tackles exercises of comparative statics

these days, we proceed in a different way. Specifically, we will state only assumptions

that are necessary to get unambiguous results, and assume that a solution exists, is

unique, and interior. To justify why we proceed in this fashion, some remarks are in

order.

In recent decades, comparative statics has had some revival. One message of this new

literature is that many assumptions usually made to perform comparative statics are in

fact not necessary.3 For this reason, it has been common since then only to establish

a minimal set of assumptions to get unambiguous comparative statics. The goal is to

make a clear distinction between assumptions made to obtain a well-behaved problem

and those related to the comparative statics analysis.

I will proceed under the assumption that a solution exists, is unique, and interior, so you have a grasp of how papers

present the results these days. Nevertheless, the conditions for this in the problem at hand can be characterized in

a relatively simple way.

Just in case you are curious, I outline assumptions to obtain a well-defined problem. Since the price domain is

compact and π is continuous, an optimal price exists. Moreover, by using Inada conditions and assuming that profits

are strictly quasiconcave, then a solution is interior and unique.

However, keep in mind that these are only sufficient conditions. For instance, it is not uncommon to have profits

functions that are not strictly quasiconcave but the solution is unique anyway. Furthermore, we can sometimes

predict how a parameter affects a solution, even if the solution is not unique.

There are many details that we need to take into account to tackle these issues, But a lot of them are unrelated or

not necessary to provide an answer to what makes a firm successful.

3For instance, it has been shown that we can predict how a parameter affects a solution, even when
the solution is not unique.
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We characterize the solution by the FOC:

p∗ =
εp (p

∗;α)

εp (p∗;α)− 1
c. (PRI)

The FOC is

dπ
dp

=
∂Q(p;α)

∂p
(p− c) +Q (p, α) = 0⇒ ∂Q(p;α)

∂p
1

Q(p,α)
= − 1

(p−c)

By multiplying both sides by p, then − ∂Q(p;α)
∂p

p
Q(p,α)

= p
(p−c)

.

Since ε (p;α) := − ∂Q(p;α)
∂p

p
Q(p,α)

then ε (p;α) = p
(p−c)

which by working it out becomes p =
ε(p;α)

ε(p;α)−1
c.

Since we have assumed that εp (p;α) > 1 for all (p;α), then (PRI) determines that

p∗ > c. Notice that (PRI) provides only an implicit characterization of the optimal prices

p∗, since the price elasticity also depends on the price. We denote the implicit value p∗

satisfying equation (PRI) by p∗ (α, c).

Once that optimal prices are pinned down, optimal profits are

π∗ (α, c) := Q [p∗ (α, c) , α] [p∗ (α, c)− c] .

10.2.5 A Digression: The Inelastic Demand Case

There exists a solution when ε (p;α) < 1 for any p, but it is not the one given by (PRI).

Instead, the solution would lie on the boundary. The case is particularly interesting,

since it justifies government regulation of markets.

Demand is inelastic when the firm increases the price of the good, and consumers

decrease their consumption less than proportionally. This can be observed clearly in the

extreme case where ε (p;α) = 0, such that consumers still keep demanding the same

quantity following a price increase. Examples potentially covered by this are necessity

goods (electricity, water) or critical medicine (v.gr. oncological medication, insulin).

Regarding the former type of good, they are usually provided by one firm, given the

economies of scale that characterize the industry. If the government would not intervene

at all and a monopoly supplied these goods, we could expect that the firm would charge

such an extremely high price that not everyone could afford the good.

Let’s first provide an intuition of the solution. Then, show formally that increases
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in price make the firm garner higher profits. Profits are given by the difference between

revenues R (p;α) := pq (p;α) and costs C (p;α) := cq (p;α). A firm can increase its

revenue through either a higher price or greater quantities. However, there is a trade-off:

ceteris paribus, greater prices result in lower quantities demanded.

However, when the demand is inelastic, a 1% increase in price decreases the quantity

demanded less than 1%. Thus, overall, increases in prices end up determining higher

revenues. At the same time, the decrease in quantities reduces the costs: since the firm

has to produce less, the cost C (p;α) becomes lower. All this provides the intuition that

the best strategy for a monopoly when it sells an inelastic product is charging a price as

high as possible.

Let’s now show this formally. First, (PRI) cannot be a maximum, and it is in fact

the solution that minimizes profits. This can be easily seen, since (PRI) entails that the

price is lower than its cost. Thus, profits would be necessarily negative, and it would be

better not to sell at all. From this, we conclude that the FOC cannot provide us with

a solution. Since the FOC is a necessary condition for an interior solution (and since it

can be shown that a solution exists), the solution must lie at the boundary.

How can we detect a corner solution? One clue is when an increase or decrease of the

price entails greater profits for any p. In other terms, a corner solution arises when the

first derivative is monotone. When this occurs, the best choice is to increase or decrease

the control variable as much as possible.

To establish a direct link between this approach and the fact that εp (p;α) < 1, it

will be easier to analyze the behavior of ∂ lnπ(p,α)
∂ ln p

. Notice that this is without loss of

generality, since ∂ lnπ(p,α)
∂ ln p

> 0 iff ∂π(p,α)
∂p

> 0. Formally, ∂ lnπ(p,α)
∂ ln p

= ∂π(p,α)
∂p

p
π(p,α)

, where

profits and prices are positive.

We will show that ∂ lnπ(p,α)
∂ ln p

> 0 for any p > c. This requires showing that the sign

holds, irrespective of the price at which we are evaluating the derivative (that is why we

ask for the condition to hold for any p > c).
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Applying logs to the profit function, lnπ (p;α) = lnQ (p;α) + ln (p− c), we get:

∂ ln π (p, α)

∂ ln p
=

∂ lnQ (p, α)

∂ ln p︸ ︷︷ ︸
=−εp(p;α)

+
∂ ln (p− c)

∂ ln p
.

Notice that ∂ ln(p−c)
∂ ln p

= ∂ ln(p−c)
∂p

p because d ln p = 1
p
dp. Then, ∂ ln(p−c)

∂ ln p
= p

p−c
, and so

∂ lnπ (p, α)

∂ ln p
= − εp (p;α)︸ ︷︷ ︸

<1

+
p

p− c︸ ︷︷ ︸
>1

> 0.

The inequality of each term follows because, εp (p;α) < 1 by assumption, and firm

always sells its good to a price p > c. Thus, p
p−c

> 1. Moreover, since ∂ lnπ(p,α)
∂ ln p

> 0 for

any p > c, thenp∗ (α, c) := p for any (α, c) if p ∈
[
p, p
]
. The firm would then choose p,

and so the firm would sell a quantity close to zero if p is a big number.

10.2.6 About Markups

Let’s go back to the baseline case where εp (p;α) > 1 for any (p;α). The optimal price

is implicitly characterized by equation (PRI).

We introduce an important concept for the analysis, which is the markup. It is

denoted by µ and defined by:

µ (p;α) :=
εp (p;α)

εp (p;α)− 1
.

The name follows because µ evaluated at p∗ implies that (PRI) is

p∗ = µ (p∗;α) c (PRI-1)

and so p∗

c
= µ (p∗;α).

Markups give information about the revenue from selling one unit of the good (i.e.

p) relative to the cost of producing that unit (i.e. c). Put it simple, it provides a ratio

of revenue over cost per unit sold.

The first conclusion we can obtain using the concept of markups is regarding consumer

welfare. In perfect competition, prices equal marginal costs, and so µ = p
c
= 1. For this

reason, markups provide information about the monopoly power that a firm has, relative
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to the ideal case of perfect competition. This also reveals why consumers do not benefit

from a monopoly: a firm prefers to restrict quantities with the goal of benefiting from

higher prices and savings in production costs. The level of markup provides information

about the extent to which this strategy is followed.

10.3 Comparative Statics (CS)

A CS analysis identifies the impact on endogenous variables due to exogenous changes

in the parameters. In our model, the choice decision is the price, and there are two

parameters c and α. Once we determine how prices are affected by these parameters,

we also identify the effect on other endogenous variables, like profits, quantities, and

markups.

For now, let’s focus on how α and c affect the optimal price p∗ (α, c). We will perform

the CS analysis by varying one parameter at a time. Our goal is to establish the signs

of ∂p∗(α,c)
∂c

and ∂p∗(α,c)
∂α

.

10.3.1 Some Additional Assumptions

Before doing a comparative static analysis, it is necessary to add some assumptions to

obtain unambiguous results. These assumptions are related to the impact of prices on

price elasticity and markups.

We begin by showing that the effect of prices on the price elasticity has the same sign

as the negative effect of prices on markups. To observe this, we know that µ (p;α) :=

εp(p;α)

εp(p;α)−1
. Taking µ as a function of εp, the relation between these two variables is:

∂µ (εp)

∂εp
=

−1

(εp − 1)2
.

From this, we conclude that the markup increases if the price elasticity decreases. As

a corollary, if a parameter changes and decreases the price elasticity, the markup would

increase. This implies that the impact on markups depends on whether the change in

a parameter makes the demand more inelastic (higher markup) or more elastic (lower
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markups). Based on this, the assumptions we make about how εp is impacted when p

or α varies completely determine how markups are affected.

So far, we have only supposed that ∂εp(p;α)

∂α
≤ 0, and therefore:

∂µ (p∗;α)

∂α
=

−1

(εp − 1)2
∂εp (p

∗;α)

∂α
≥ 0.

Thus, increases in the good’s appeal determine a higher markup, because it makes the

demand more inelastic.

Now, let’s consider how variations in prices affect the price elasticity and, hence,

markups. Formally,

∂µ (p∗;α)

∂p
=

−1

(εp − 1)2
∂εp (p

∗;α)

∂p
,

which determines that there is a negative relation between ∂µ(p∗;α)
∂p

and ∂εp(p∗;α)
∂p

. It is not

obvious what the sign of ∂εp(p∗;α)
∂p

should be. Consistent with the results we want to get

below, we suppose that

∂εp (p
∗;α)

∂p
< 0,

which implies that

∂µ (p∗;α)

∂p
> 0,

and, consequently, firms that charge a higher price set a higher markup or, equivalently,

firms that charge a low price have a lower markup. One way to interpret this result is to

think about income-constrained consumers. Presumably, richer people are less sensitive

to price increases. Moreover, an increase in price makes a part of the poor people not

being able to afford it. Due to this, price increases can determine that rich people get a

greater weight in aggregate demand. Thus, the price elasticity of the aggregate demand

would be lower, determining that price increases allow the firm to raise its markup.

The second assumption we make is that, even though ∂µ(p∗;α)
∂p

> 0, the following

holds:

1− ∂ lnµ (p;α)

∂ ln p
> 0. (10.1)
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The assumption 1 − ∂ lnµ(p;α)
∂ ln p

> 0 can be rewritten in terms of the price elasticity by asking for the following

inquality: εp (p;α)− 1 > − ∂ ln εp(p;α)

∂ ln p
. To show that 1− ∂ lnµ(p;α)

∂ ln p
> 0 ⇔ εp (p;α)− 1 > − ∂ ln εp(p;α)

∂ ln p
, let’s begin

by showing that
∂ lnµ(p;α)

∂ ln p
= − ∂ ln εp(p;α)

∂ ln p
1

εp(p;α)−1
. This follows because:

∂µ(p∗;α)
∂p

= −1

(εp−1)2
∂εp(p∗;α)

∂p
which by multiplying both sides by p∗

µ(p∗;α)
becomes

∂ lnµ(p∗;α)
∂ ln p

=

p∗
µ(p∗;α)

−1

(εp−1)2
∂εp(p∗;α)

∂p
.

By using the definition of µ (p∗;α), then
∂ lnµ(p∗;α)

∂ ln p
= p∗

εp(p∗;α)
−1

(εp−1)
∂εp(p∗;α)

∂p
and so the result follows.

Once that we know this, then 1− ∂ lnµ(p;α)
∂ ln p

> 0 ⇔ 1+
∂ ln εp(p;α)

∂ ln p
1

εp(p;α)−1
> 0 or, just, εp (p;α)−1 > − ∂ ln εp(p;α)

∂ ln p
.

What is the justification for Assumption (10.1)? It is necessary to get results in line

with the taxonomy of firms’ strategies we want. This is consistent with the approach

we have used so far, where we only add assumptions to have unambiguous effects in the

comparative statics analysis.

However, the assumption could also be justified by showing its relevance on other

grounds. In particular, we could use the argument that Assumption (10.1) evaluated at

the optimal price p∗ ensures the second-order condition and uniqueness of the equilib-

rium.

Summary of the Asssumptions

� εp (p;α) > 1 for any (p;α) (elastic demand at any point)

� α is appeal:

– εα (p;α) > 0 (increases of α boost demand)

– ∂εp(p;α)

∂α
≤ 0 (greater α makes demand more inelastic/less elastic)

�

∂εp(p∗;α)
∂p

< 0, which implies ∂ lnµ(p;α)
∂ ln p

> 0 (for definite CS)

� 1− ∂ lnµ(p;α)
∂ ln p

> 0 (for definite CS)

10.3.2 Variations in c

There are two equivalent ways to perform CS. Both proceed in a similar fashion. They

require differentiating the equilibrium conditions, which in our case are given by the

FOC (PRI-1). The methods differ regarding whether we use the solution in the FOC
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as a function of the parameters or as a value. Let’s state each method and explain this

more clearly.

Method 1 of CS

Step 1. Start from the equilibrium conditions of the model. Evaluate them at

the optimal values.

Step 2. Differentiate the equilibrium conditions, allowing for changes in the

endogenous variables and the parameter of interest.

Step 3. Work out the expressions to obtain the derivative of each endogenous

variable with respect to the parameter.

We know that the FOC is given by p∗ = µ (p∗;α) c, which implicitly provides the

solution p∗ (α, c). Step 1 in method 1 uses p∗ (a value) rather than p∗ (α, c) (a function).

Let’s first consider the case where the parameter of interest is c. Our goal is to

identify the impact on the endogenous variable p∗.Differentiating equation (PRI-1) with

dp∗ ̸= 0 and dc ̸= 0,

∂p∗ (α, c)

∂c
=

µ (p∗;α)

1− ∂ lnµ(p∗;α)
∂ ln p

> 0, (PRICE-c)

where we have used Assumption (10.1) to determine that ∂p∗(α,c)
∂c

> 0. From this we

conclude that more efficient firms (lower c) charge lower prices.

The FOC is p∗ = µ (p∗;α) c and differentiating it with dp∗ ̸= 0 and dc ̸= 0:[
1−

∂µ (p∗;α)

∂p
c

]
dp∗ = µ (p∗;α) dc

which implies that
∂p∗(α,c)

∂c
=

µ(p∗;α)

1− ∂µ(p∗;α)
∂p

c
.

Let’s now show that
∂µ(p∗;α)

∂p
c =

∂ lnµ(p∗;α)
∂ ln p

. Given
∂µ(p∗;α)

∂p
c, we know p∗ = µ (p∗;α) c by (PRI-1), and so we

can substitute c for p∗
µ(p∗;α)

. This determines that
∂µ(p∗;α)

∂p
c =

∂µ(p∗;α)
∂p

p∗
µ(p∗;α)

. Then, since
∂µ(p∗;α)

∂p
p∗

µ(p∗;α)
=

∂ lnµ(p∗;α)
∂ ln p

, we get
∂p∗(α,c)

∂c
=

µ(p∗;α)

1− ∂ lnµ(p∗;α)
∂ ln p

, which is positive since Assumption (10.1) is 1− ∂ lnµ(p∗;α)
∂ ln p

> 0.

The second method requires treating the optimal solution as a function of the pa-

rameters, rather than a specific value.
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Method 2 of CS

Step 1. Start from the equilibrium conditions of the model. Evaluate them at

the optimal solutions expressed as functions of the parameters.

Step 2. Take derivatives of the equilibrium conditions with respect to the param-

eter of interest.

Step 3. Work out the expressions to get the derivative of each endogenous variable

with respect to the parameter.

The FOC evaluated at the optimal solution as a function of the parameters becomes

p∗ (α, c) = µ [p∗ (α, c) ;α] c. This equation is now only a function of α and c. To identify

the result, we need to take the derivative of this expression with respect to the param-

eter of interest. Methods 1 and 2 provide the same result, which is given by equation

(PRICE-c).

The FOC is p∗ = µ (p∗;α) c, and hence p∗ (α, c) = µ [p∗ (α, c) ;α] c by treating p∗ as a function. Taking the derivative

with respect to c then,

∂p∗(α,c)
∂c

=

[
∂µ[p∗(α,c);α]

∂p
c

]
∂p∗(α,c)

∂c
+ µ [p∗ (α, c) ;α], which gives

∂p∗(α,c)
∂c

=
µ[p∗(α,c);α]

1− ∂µ[p∗(α,c);α]
∂p

c
. In the derivation with the method 1 of CS we have shown that

∂µ[p∗(α,c);α]
∂p

c =

∂ lnµ[p∗(α,c);α]
∂ ln p

, and so the result follows.

Once we have determined the effect of variations in c on prices, we can identify the

effect of c on quantities and markups. Optimal quantities are given by q∗ [p (α, c) ;α].

Thus,

dq∗ [p∗ (α, c) ;α]

dc
=

∂q (p∗;α)

∂p︸ ︷︷ ︸
−

∂p∗ (α, c)

∂c︸ ︷︷ ︸
+

< 0. (QUANT-c)

The result is intuitive. Less efficient firms (i.e. firms with greater marginal costs) set a

higher price, and consequently sell less.

As far as markups, optimal markups are µ [p∗ (α, c) ;α], and so

dµ∗ [p∗ (α, c) ;α]

dc
=

∂µ (p∗;α)

∂p︸ ︷︷ ︸
+

∂p∗ (α, c)

∂c︸ ︷︷ ︸
+

> 0. (MK-c)
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As a corollary, more efficient firms charge a lower markup.

Overall, we have determined that less productive firms charge higher prices,

sell less, and charge higher markups. Equivalently, more productive firms charge

lower prices, sell more quantity, and charge lower markups.

10.3.3 Variations in α

Let’s consider variations in α and perform comparative statics by using Method 1. Dif-

ferentiating equation (PRI-1) with dp∗ ̸= 0 and dα ̸= 0,

∂ ln p∗ (α, c)

∂ lnα
=

∂ lnµ(p∗;α)
∂ lnα

1− ∂ lnµ(p∗;α)
∂ ln p

≥ 0. (PRICE-α)

Since p∗, α > 0, then ∂ ln p∗(α,c)
∂ lnα

≥ 0 iff ∂p∗(α,c)
∂α

≥ 0. Thus, a greater appeal make a firm

charge a weakly higher price.

We use the method 1 of CS. The FOC is p∗ = µ (p∗;α) c, and differentiating it under dp∗ ̸= 0 and dα ̸= 0:[
1−

∂µ (p∗;α)

∂p
c

]
dp∗ =

∂µ (p∗;α)

∂α
cdα

which implies that
∂p∗(α,c)

∂α
=

∂µ(p∗;α)
∂α

c

1− ∂µ(p∗;α)
∂p

c
. Regarding the denominator, we have already shown in the derivation

of (PRICE-c) that
∂µ(p∗;α)

∂p
c =

∂ lnµ(p∗;α)
∂ ln p

. As for the numerator, using that c = p∗
µ(p∗;α)

, then
∂µ(p∗;α)

∂α
c =

∂µ(p∗;α)
∂α

p∗
µ(p∗;α)

, which equals
∂ lnµ(p∗;α)

∂α
p∗.

All these results determine that

∂p∗ (α, c)

∂α
=

∂ lnµ(p∗;α)
∂α

p∗

1− ∂ lnµ(p∗;α)
∂ ln p

Multiplying both sides by α, then
∂p∗(α,c)

∂α
α =

∂ lnµ(p∗;α)
∂α

αp∗

1− ∂ lnµ(p∗;α)
∂ ln p

, and dividing both sides by p∗, then ∂p∗(α,c)
∂α

α
p∗ =

∂ lnµ(p∗;α)
∂α

α

1− ∂ lnµ(p∗;α)
∂ ln p

. Since
∂ lnµ(p∗;α)

∂α
α =

∂ lnµ(p∗;α)
∂ lnα

and
∂p∗(α,c)

∂α
α
p∗ =

∂ ln p∗(α,c)
∂ lnα

, the result follows.

To understand why prices are increasing in appeal, keep in mind that when a firm

sells a product with more appeal, it faces a more inelastic demand. Hence, the firm can

increase its price, and yet the quantities sold are not heavily affected. Thus, it is optimal

to charge a higher price.
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Regarding optimal quantities q [p∗ (α, c) ;α]:

dq [p∗ (α, c) ;α]

dα
=

∂q (p∗;α)

∂α︸ ︷︷ ︸
+

+
∂q (p∗;α)

∂p︸ ︷︷ ︸
−

∂p (α, c)

∂α︸ ︷︷ ︸
+ or 0

⋛ 0, (QUANT-α)

and so the effect has an ambiguous sign.

Remark
Observe the distinction between total and partial derivatives. Our as-

sumptions refer to partial derivatives. But, in equilibrium, all the variables are

changing at the same time. Thus, when we analyze the sign of dq[p(α,c);α]
dα

, quantities

are affected directly by a greater appeal, but also indirectly by the effect that appeal

has on prices.

The ambiguous effect of appeal on quantities occurs because two opposing effects are

working simultaneously. First, there is a positive direct effect, where more appeal in-

creases the demand for the good. However, there is also a negative indirect effect in

case appeal impacts the price elasticity. If appeal in particular turns the demand more

inelastic, the firm would have incentives to increase its price, thus reducing its demand.

Overall, depending on which effect dominates, demand can increase or decrease. No-

tice that if appeal does not affect the price elasticity, the quantity demanded would

necessarily be greater.

For future references, we distinguish between cases depending on the total effect of

appeal on quantities:

Case I of (QUANT-α):
dq [p∗ (α, c) ;α]

dα
> 0,

Case II of (QUANT-α):
dq [p∗ (α, c) ;α]

dα
< 0.

Concerning the effects on markups:

dµ [p∗ (α, c) ;α]

dα
=

∂µ (p∗;α)

∂α︸ ︷︷ ︸
+

+
∂µ (p∗;α)

∂p︸ ︷︷ ︸
+

∂p∗ (α, c)

∂α︸ ︷︷ ︸
+

> 0. (MK− α)

Intuitively, the result arises since there is a one-to-one relation between the sign of µ and

of εp, where a decrease in the price elasticity results in greater markups. And a greater

appeal always turns the demand more inelastic, due to its direct effect and its indirect
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effect through p∗ (increases in prices make the demand more inelastic.

In elasticity terms, it can be even shown that
dµ[p∗(α,c);α]

dα
=

∂ ln p∗(α,c)
∂ lnα

. To see this, optimal prices imply that

µ [p∗ (α, c) ;α] =
p∗(α,c)

c
. where µ∗ (α, c) :=: µ [p∗ (α, c) ;α]. Notice that

∂µ∗(α,c)
∂ lnα

=
dµ[p∗(α,c);α]

dlnα
. And since

lnµ∗ (α, c) = ln p∗ (α, c) + ln c, then
∂ lnµ∗(α,c)

∂ lnα
=

∂ ln p∗(α,c)
∂ lnα

.

Try to understand the difference between the total and partial derivatives. The term
∂µ∗(α,c)
∂ lnα

is only function of α,

and it captures the direct effect of α on µ as well as the indirect effect of α on prices.

10.4 What Makes A Firm Successful?

Remember that our analysis had the ultimate goal of identifying what makes a firm

successful. In terms of the model, this means that the firm garners a high profit. To

accomplish this, we distinguish between the different types of successful firms we can

conceive. These types are established according to the specific vector (α, c) a firm has.

The parameter α provides information about how popular the good is and the price the

consumers are willing to pay for it. Regarding the parameter c, it indicates the firm’s

efficiency to produce the good, and hence its cost.

We begin by showing that, indeed, greater appeal or more efficiency make a firm

garner a higher profit. To show this formally, recall that a firm’s optimal profit is

π∗ (α, c) := Q [p∗ (α, c) , α] [p∗ (α, c)− c]

If we want to know how π∗ varies when one of the parameters (α or c) changes, we

can apply the Envelope Theorem. This theorem allows us to compute the impact on the

value function due to change in a parameter. Thus,

∂π∗ (α, c)

∂α
=

∂Q (p∗;α)

∂α
> 0,

∂π∗ (α, c)

∂c
= −Q (p∗;α) < 0.

The result states that successful firms have high α and/or a low c.

Notice we have treated c and α as parameters, even when a firm’s appeal and productivity is partly decided by the

company. Actually, our results apply to this case too. Treating c and α as parameters can be understood as the final

outcome of a well-defined model. For instance, c and α could be the outcome in a model where firms have different

abilities to differentiate their product or reduce their costs.
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Formally, we can respectively define these skills by φα and φc. In a model like this, each firm having a value (φc, φα)

makes choices c∗ (φc, φα) and α∗ (φc, φα). Given heterogeneity of firms in industry, different combinations (c∗, α∗)

will arise in equilibrium. By treating (c, α) as parameters and asking how their variations affect a firm’s decisions,

we are in fact asking how firms with a greater φc (lower c) or a greater φα (higher α) make their choices.

According to the pair (α, c), firms will behave differently in the market. According to

Michael Porter, a famous academic specialized in business, there are three strategies that

firms can pursue to be successful. He refers to them as “Generic Competitive Strategies”

and comprise:

[1] Overall cost leadership

Examples : Walmart and Costco (retailers), RyanAir and EasyJet (airlines), Ikea

(furniture), H&M (apparel).

[2] Differentiation

Examples : Nike and Adidas (sport clothes) Coke and Pepsi (carbonated beverages),

Duracell and Energizer (batteries) Bayer and Pfizer (pharmaceutical products),

Apple (computers).

[3] Focus

Examples : Ferrari, BMW and Mercedes Benz (cars), Louis Vuitton and Gucci

(apparel), Dom Pérignon (champagne), TAG Heuer (clocks).

Next, we show how each category can be reflected by appropriate choices of α and c.

10.4.1 What are the Strategies that a Successful Firm Follows?

We have shown that firms with a lower c or greater α have higher profits. Moreover, the

analysis of the model has established the following results:

Summary of the Results

Variations in c

�
∂π∗(α,c)

∂c
< 0
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�
∂p∗(α,c)

∂c
> 0

�
dq∗[p∗(α,c);α]

dc
< 0

�
dµ∗[p∗(α,c);α]

dc
> 0

Variations in α

�
∂π∗(α,c)

∂α
> 0

�
∂p∗(α,c)

∂α
> 0

�
dq[p∗(α,c);α]

dα
⋛ 0

– Case I: dq[p∗(α,c);α]
dα

> 0

– Case II: dq[p∗(α,c);α]
dα

< 0

�
dµ[p∗(α,c);α]

dα
> 0

With this information, we can now establish Porter’s taxonomy:

[1] Overall Cost Leadership: it comprises firms with a lower c. Relative to other

firms in the industry, they have a high q∗, a low p∗, and a low µ∗.

[2] Differentiation: it comprises firms with a high α and satisfying Case I of

(QUANT-α). Relative to other firms in the industry, they have a high q∗, a high

p∗, and a high µ∗

[3] Focus: it comprises firms with a high α and satisfying Case II of (QUANT-α).

Relative to other firms in the industry, they have a low q∗, a high p∗, and a high

µ∗.

The profit function enables us to show how these strategies are reflected in a firm’s

features. There are two ways in which we can reexpress optimal profits. First,

π∗ (α, c) :=
R [p∗ (α, c) , α]

εp [p∗ (α, c) , α]
. (PROF1)

Let’s indicate optimal variables without arguments and with a * as a superscript. Optimal profits are π∗ (α, c) :=

Q∗ (p∗ − c). By the FOC, p∗ = ε∗
ε∗−1

c and so by subtracting c = ε∗−1
ε∗ p∗. Thus, optimal profits are π∗ (α, c) :=

Q∗
(
p∗ − ε∗−1

ε∗ p∗
)
or, just π∗ (α, c) := Q∗p∗

(
1− ε∗−1

ε∗

)
which determines the result.
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Moreover, by the mere definition of a profit function, we can divide and multiply by

c and obtain:

π (p∗;α, c) = cQ (p∗;α)︸ ︷︷ ︸
=:(1)

[µ (p∗;α)− 1]︸ ︷︷ ︸,
=:(2)

(PROF2)

where we have used that p∗

c
= µ (p∗;α)

Equation (PROF2) indicates that one way to garner high profits is by charging a

lower markup (low µ, and so a small term (2)) and having a great scale of production

(high Q, and so a big term (1)). A firm that deploys this strategy is identified as being

massive and cheap. For this to occur, two conditions have to be met: the firm’s efficiency

has to be substantially high and consumers have to be price sensitive. The last condition

follows by (PROF1), which shows that consumers need to have a quite elastic demand.

Basically, these aspects determine that a low price attracts a significant part of the

consumers, and that a firm is capable of setting this low price. Overall, the firm would

get high revenues, since the pronounced quantity sold more than compensates for the

low price charged. This strategy corresponds to a cost leadership strategy in terms of

Porter’s taxonomy.

At the other extreme, (PROF2) reveals that a firm can get high profits by having low

sales (and hence a small term (1)), but charging high markups for each unit sold (high

µ, and so a big term (2)). This type of firm focuses on niche markets, where customers

have a high willingness to pay for some distinctive features of the good. In terms of

equation (PROF1), the strategy requires increasing a good’s appeal to make εp decrease

significantly. Thus, these firms can have lower total revenues relative to other firms in

the industry. Nonetheless, they could have substantially greater profits due to a high

price and savings in production costs by low production. This is the strategy “focus” in

Porter’s taxonomy.

Finally, we can conceive firms with high profits by balancing their total sales and

the prices/markups charged. These firms set high prices relative to other firms, but do

not focus on a niche market. Rather, they try to be wide in terms of the consumers
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reached. The strategy requires increasing the good’s appeal, but without doing it to

such an extent that only a few consumers can afford it. In terms of Porter’s taxonomy,

this corresponds to the differentiation case.
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10.5 Exercises

[1] Let us focus on a firm that is successful due to demand appeal, rather than the

cost side (i.e. efficiency). We’ll choose a specific functional form for demand, and

consider two different parameters (A and σ) that represent appeal: both boost

demand, but one does not affect the price elasticity.

Consider that demand is q (p) := Ap−σ, with parameters A > 0 and σ > 1. The

firm produces with a technology exhibiting CRS, with unitary cost c > 0.

(a) Establish the price elasticity of demand (hint: use the log definition). Does

it depend on A?

(b) Determine the firm’s optimal price and quantities.

(c) Show that increases in A and decreases in σ increase the firm’s profit (hint:

use the Envelope Theorem. It’ll also help work in logs).

(d) Suppose that the firm is considering two types of investments. Investment 1

increases A, while Investment 2 decreases σ. To keep matters simple, suppose

that these investments do not entail additional costs to be implemented. In

question c), you determined that both types of investments increase the firm’s

profit. Now, we establish why this occurs. Higher profits can arise because a

firm is selling more, charging a higher price, or both. Establish which channel

operates with Investment 1 and 2.

(e) Suppose that you’re working on your thesis, and have to identify the invest-

ment type used by a particular firm in two scenarios. Determine for the

following situations if you would capture the situation by Investment 1 or 2.

i. The firm has established new channels of product distribution, and also

enhanced the existent ones. This makes the firm’s product more widely

available, thereby allowing it to reach more people.

ii. The firm has overhauled the features of its product. This has not only

boosted the firm’s sales, but also increased a customer’s willingness to
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pay for the product.

[2] Let’s consider the monopoly model of the lecture note, but modified in one respect:

increasing a good’s appeal entails greater marginal costs. This makes “appeal” be

more in line with a quality definition. For instance, a cell phone becomes more

appealing if it has a faster processor, has more gigabytes of RAM, is made with

more resistant materials, etc. But those features also increase the cost per unit

produced.

To capture this, we add marginal costs c (α) with c′ (α) > 0 to the baseline model.

(a) Characterize the optimal prices, p∗ [c (α) , α].

(b) Show that ∂ ln p∗[c(α),α]
∂ lnα

=
∂ lnµ∗
∂ lnα

+
d ln c(α)
d lnα

1− ∂ lnµ∗
∂ ln p

. Interpret the result and compare it

with the baseline case. Intuitively, why does its sign do not change with

respect to the baseline case?

(c) Does a higher α have the same qualitative effect on markups and quantities

as in the baseline model? Check this and explain your result.

(d) Given all your answers, consider Porter’s taxonomy for successful firms due

to the demand side (“differentiation” and “focus”). Is this still valid? Justify

your answer.

Answer Keys for Some of the Exercises:

1) In terms of the baseline model, the exercise is just providing a functional form

to capture two types of appeal parameters. Both satisfy ∂q
∂α

> 0, but one is such that

∂εp
∂α

= 0 and the other satisfies ∂εp
∂α

< 0. The aim of the exercise is that you can identify

which case corresponds to A and which to σ.

2) Qualitatively, nothing changes.
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11.1 Roadmap

In the previous lecture note, we started our analysis of a firm’s decisions. Since the aim

was identifying what makes a firm successful, we made some simplifying assumptions.

In particular, we assumed that the firm under analysis was supplying only one good.

In this and the next lecture note, we delve into different strategies that the firm

could pursue to increase its profit. In this note in particular, we analyze the case of

multiproduct firms. This requires us to study how firms make price decisions when they

incorporate the interdependence between the different goods. We consider the possibility

that goods are either substitutes or complements, whose implications are different.

11.2 Multiproduct Firms

We keep considering the case of one firm in a specific industry in isolation. The firm

makes price decisions relative to two goods, labeled 1 and 2. Aside from the existence of

two goods, the setup is similar to that used in previous lecture notes. In particular, we

suppose the firm has a production technology with constant marginal costs, C (qi) := ciqi,

and the price elasticity of i satisfies εi > 1, where good i = 1, 2.

Goods 1 and 2 display one-way complementarity/substitution. This occurs

when their demands are q1 (p1, p2) and q2 (p2) respsectively, so that good 1’s demand 1

is influenced by the price of good 2, but the consumption of good 2 only depends on its

own price. We say that good 2 is a substitute for good 1 if ∂q1(p1,p2)
∂p2

> 0, whereas

good 2 is a complement for good 1 if ∂q1(p1,p2)
∂p2

< 0. We can equivalently define this

relation through the cross price elasticity of good 1 with respect to good 2, which is

formally defined by ε12 (p1, p2) :=
∂ ln q1(p1,p2)

∂ ln p2
and satisfies

sgn [ε12 (p1, p2)] = sgn

[
∂q1 (p1, p2)

∂p2

]
.

Thus, good 2 is a substitute for good 1 when ε12 > 0, while good 2 is a complement for

good 1 when ε12 < 0.
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For now, we will solve the firm’s optimization problem without making any assump-

tion about the relation between goods—ε12 could be positive or negative. The optimiza-

tion problem is given by

max
p1,p2

π (p1, p2) = q1 (p1, p2) (p1 − c1) + q2 (p2) (p2 − c2)

where we suppose that pi ∈ [0,∞) for each good i. For future references, we define

πi (p1, p2) := qi (pi − ci) and Ri := piqi as the profit and revenue of good i, respec-

tively.

Remark
The assumption that pi ∈ [0,∞) for each i implies that negative prices

are not allowed. If it is optimal to set a negative price for a range of the parameters,

we suppose that the firm sets a price equal to zero. In the context of multiproduct

firms, negative prices should not be ruled out, since it is possible that the price of a

good may be lower than its marginal cost, as we will see below.

This model also could capture the decision of whether to introduce a specific good, by interpreting pi = ∞ as the

decision of not selling good i. At an infinite price, the consumption would necessarily be zero, which is equivalent

to saying that the firm does not want to sell the good.

Considering good 1’s optimal price in isolation, the only difference with the case of a

single-product firm is that q1 now depends on one more variable in addition to p1, which

is p2. Nonetheless, the mathematical structure is the same, since π2 does not depend on

p1. Due to this, the optimal price of good 1 satisfies the following equation:

p∗1 =
ε1 (p

∗
1, p2)

ε1 (p∗1, p2)− 1
c1 (11.1)

where we denote the implicit solution of p∗1 for some value of p2 by p∗1 (p2).

The FOC is

∂π(p1,p2)
∂p1

=
∂π1(p1,p2)

∂p1
=

∂q1(p1,p2)
∂p1

(p1 − c1) + q1 (p1, p2) = 0

which is exactly the same FOC as in the case of a single-product firm, treating π11 as the profits. Therefore, the

same pricing rule holds, with the difference that now the price elasticity also depends on the price of good 2.

Unlike good 1, the firm chooses good 2’s price taking into account the effect that p2

has on good 1’s demand. Depending on whether good 1 is a substitute or a complement
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for the good 2, an increase in price 1 might increase or decrease good 2’s demand. This

is reflected in the FOC for good 2’s price, which is:

p∗2 =
ε2 (p

∗
2)

ε2 (p∗2)− 1
c2 + ρ12 (p

∗
2) (P2)

where

ρ12 (p
∗
2) := ε12 [p1 (p

∗
2) , p

∗
2] π1 [p1 (p

∗
2) , p

∗
2]

1

q2 (p∗2) (ε2 (p
∗
2)− 1)

. (ρ12-b)

The term ρ12 can be reexpressed by rewriting the optimal profit obtained through good

1, given by π1 =
R1

ε1
:

ρ12 (p
∗
2) := ε12 [p1 (p

∗
2) , p

∗
2]
R1 [p1 (p

∗
2) , p

∗
2]

ε1 [p1 (p∗2) , p
∗
2]

1

q2 (p∗2) (ε2 (p
∗
2)− 1)

(ρ12-a)

We skip the arguments of each function to keep the notation as simple as possible. The FOC is given by:

∂π

∂p2
=

∂q2

∂p2
(p2 − c2) + q2︸ ︷︷ ︸

same as in the single-product case

+
∂q1

∂p2
(p1 − c)︸ ︷︷ ︸

cross effect

= 0

Relative to the case of a single-product firm, there is an additional term given by the cross-effect ∂q1
∂p2

(p1 − c). This

captures how the pricing of good 2 impacts good 1.

Now, we work out the expression to make it comparable to equation (11.1).

∂q2
∂p2

(p2 − c2) + q2 + ∂q1
∂p2

(p1 − c) = 0.

Multiplying both sides by − p2
q2

, and multiplying and dividing the last term by q1:

− ∂q2
∂p2

p2
q2

(p2 − c2)− p2
q2

q2 − p2
q2

q1
q1

∂q1
∂p2

(p1 − c) = 0

⇒ p2 (ε2 − 1)− ε2c2 − q1
q2

ε12 (p1 − c) = 0

Thus, p2 = ε2
ε2−1

c2 + ε12
q2(ε2−1)

π1.

To obtain the second expression, we use (11.1) to reexpress π1. From (11.1), we obtain that p1 − c = 1
ε1−1

c1 and

also p1
ε1

= 1
ε1−1

c1. Therefore, q1 (p1 − c) = q1p1
ε1

= R1
ε1

since π1 = q1 (p1 − c), and the result follows.

With the derivation of the optimal prices, we can now consider the cases of substitutes

and complements. This requires analyzing the pricing of good 2, which takes into account

the influence of good 2’s price on good 1’s demand.

To do this, we define a benchmark scenario to compare our results. Let pSP2 be the

price of good 2 when goods are independent, i.e. when ε12 = 0 and hence ρ12 = 0. The

superscript SP stands for “single product” and reflects that the pricing is the same as a

single-product firm when goods are independent. Formally, pSP2 is given by

pSP2 =
ε2
(
pSP2
)

ε2 (pSP2 )− 1
c2
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11.2.1 Substitute Goods

Let’s suppose that good 2 is a substitute for good 1. Thus, ∂q1(p1,p2)
∂p2

> 0 or, equivalently,

ε12 (p1, p2) > 0. By simple inspection of equation (P2), we can determine that ρ12 > 0,

thereby obtaining the following result:

Result 11.1 Suppose that good 2 is a substitute for good 1. Then, p∗2 > pSP2 , so

that the optimal price is higher than that set by a single-product firm.

In the case of substitutes, the term ρ12 captures what is known in the literature as the

cannibalization effect . The name follows because when a firm introduces some good in

the market, it steals demand from its other goods. This provides the firm with incentives

to increase the price of good 2 (relative to the case where there is no relation between

goods), diminishing the cannibalization effect of good 2 on good. Notice that a greater

price of good 2 is equivalent to lower sales of good 2. Consequently, the firm produces

less of good 2 relative to a single-product firm, due to the cannibalization effect.

The result begs the question of why a firm would launch a product that will compete

with itself. We can provide different answers. First, by assuming that the solution is

interior as we did.1 we are implicitly assuming that selling both goods is more profitable

than just selling good 2 and avoiding the cannibalization effect. This requires that the

loss in good 1’s profits 1 due to the cannibalization by good 2 is more than compensated

with the total increase in profits from good 2’s sales.

Going beyond the setup under consideration, launching a new good could be rational-

ized in another way: the good steals demand from the company’s own products, but also

from rival firms. Furthermore, cannibalization is sometimes unavoidable. This is related

to the theory of product cycles. After some time, products start to become obsolete or

less trendy. In this context, a firm’s best strategy is to constantly innovate and launch

new products, even though this means stealing demand from its own products.

1Keep in mind that if we had a corner solution where the firm sets an infinite price of good 1, this
would be equivalent to not introducing the product in the market.
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Notice that the higher the cannibalization effect, the more incentives the firm have to

increase the price of good 2. Given this, it is worth analyzing when the cannibalization

effect is bigger. This question can be answered by inspecting what ρ12 depends on

through equation (ρ12-b).

� The greater ε12, the greater ρ12. The explanation for this result is trivial: the

greater the effect that the price of good 2 has on the demand of good 1, the greater

the cannibalization effect. Thus, the firm has more incentives to increase the price

of good 2.

� The greater π1, the greater ρ12. Keep in mind that π1 refers to the profit stem-

ming exclusively from good 1, not the firm’s total profit. The result entails that if

good 1 is one of the firm’s star products (that is, a good providing high profits),

the firm has more incentives to increase the price of good 2. A corollary of this

is that good 2’s quantities produced would be lower too. Using that π1 = R1

ε1
as

in equation (ρ12-a), we can also conclude that the cannibalization effect is bigger

when the revenues due good 1 are greater or good 1 is more price inelastic.

11.2.2 Complementary Goods

Let’s now suppose that good 2 is a complement for good 1. Thus, ∂q1(p1,p2)
∂p2

< 0 or,

equivalently, ε12 (p1, p2) < 0. Simple inspection of (P2) allows us to conclude that

ρ12 < 0, thereby obtaining the following result.

Result 11.2 Suppose that good 2 is a complement for good 1. Then, p∗2 < pSP2 ,so

that the optimal price is lower than that set by a single-product firm.

Intuitively, ρ12 < 0 captures that increases in good 2’s price would reduce not only the

own good’s demand, but also that of good 1. Complementarity of goods means that

greater consumption of one good increases the utility of consuming the other good. The

result can be clearly appreciated when demands derive from a Leontief utility function,
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such that goods are perfect complements. In the case of one-way complementarity, this

means that the firm has incentives to decrease the price of good 2, with the aim of

boosting the demand for good 1.

Just like we did in the case of substitutes, let’s analyze when a firm has more pro-

nounced incentives to decrease the price of good 2.

� The greater the absolute value of ε12, the greater the absolute value of ρ12.

Intuitively, the greater the effect of good 2’s price on good 1’s demand, the greater

the incentives of the firm to decrease good 2’s price.

� The greater π1, the greater the absolute value of ρ12. The firm has incen-

tives to decrease the price of good 2 when good 1 gives high profits. In fact, if good

1 were the company’s star product, it is possible that the price of good 2 is set at

a level lower than its marginal cost . A simple example of this is observed in coffee

shops, where sugar packets are free. Through the lens of the model presented, this

can be rationalized as a strategy to boost coffee consumption, which is the good

providing profits to a cafe.

11.3 Some Applications

Next, I illustrate strategies deployed by multiproduct firms in real life. For multiproduct

firms selling substitute goods, I consider Apple launching the iPhone, despite affecting

the sales of the iPod. For complementary goods, I consider Sony and the Playstation as

an example.

11.3.1 The iPhone and iPod as Substitutes

Apple entered the cell phone industry in 2007, when it launched its first iPhone. At

that moment, the iPod (the mp3 player of Apple) was accounting for almost 50% of its

total revenues, charging markups of around 40% for this product. On the contrary, the

iPhone only represented around 2.5% of its total revenues at the end of 2007.
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The iPhone includes similar features to the iPod. In particular, it can be used as

an mp3 player, making it a substitute for the iPod. Apple knew that the introduction

of the iPhone would then reduce the sales of the iPod, which in our terminology means

that the iPhone would partly cannibalize the iPod’s sales. Nonetheless, Steve Jobs did

this by arguing that “if you don’t cannibalize yourself, someone else will.”

Even when it was inevitable to reduce the iPod’s sales considerably, Apple’s expec-

tation was to increase its overall profit. In other words, it expected that the sales of

the iPhone would more than compensate for any loss due to cannibalization. Indeed,

Apple’s strategy was highly successful. These days, the iPod only represents around 2%

of Apple’s sales, while the iPhone has become the company’s star product. In fact, it

is possible to say that the iPhone allowed Apple to become one of the most profitable

firms in the industry.

Through the lens of the model, notice that there is a one-way substitution relation

between the iPod and the iPhone—the iPod is not a substitute for the iPhone, but the

iPhone is a substitute for the iPod. Nowadays, the pricing strategy of the iPhone is

not highly influenced by the cannibalization effect on the iPod. Mp3 players have lost

attraction for consumers (low ρ12), and the profits garnered through the iPod are too

low to have a pronounced influence (low π1).

11.3.2 The Playstation and Games as Complements

Sony has consistently sold the Playstation console at a price lower than its marginal cost.

To provide specific numbers to this strategy, we focus on the Playstation 3, launched in

2006. Building the console at that time had a cost of around 805 USD, while its retail

price was only 599 USD. After some time, Sony improved its efficiency in production,

thereby reducing its costs. Nonetheless, the strategy was still deployed: by late 2009,

the Playstation 3 was sold for 299 USD, even though its cost was 336 USD.2

2Nowadays, there is evidence that Sony is not selling the new generations of Playstation to a loss.
Nonetheless, the margins of profits per unit sold are really slim. For instance, in 2013, manufacturing
each Playstation 4 cost around 381 USD, while it was sold to a price of around 400 USD. There is
evidence that Microsoft deploys a similar pricing strategy for its Xbox. For more on the Economics of

185



Mart́ın Alfaro Lecture Note 11. Multiproduct Firms

The strategy is chiefly explained because Sony’s profits regarding the Playstation

come from the games sold and the online subscriptions. Specifically, Sony charges a

licensing fee for the use of its console to third-party game developers, and also performs

in-house production of games, although to a lower extent.

The model we have used can justify Sony’s strategy. To illustrate this, think of

Playstation as good 2 and games as good 1. A console price lower than its marginal

costs is optimal for a firm when two conditions are met: ρ12 is negative (good 1 has to

be a complement of good 2) and has a big value (great value of ρ12 in absolute terms).

We can be confident that this was indeed the case, by noticing the following. First,

since having the console is a necessary condition to play any game, the price of the

Playstation acts like an entry fee that Sony charges customers to allow them to play

games. Thus, the console (good 2) is a complement for the video games (good 1), which

implies that ε12 < 0 and henceρ12 < 0. Moreover, there is evidence that the profits

accrued by Sony through games is substantial, which is captured in the model through

a high π1. Both effects act in the same direction, determining a great absolute value of

of ρ12.
3

gaming consoles, you can read this article.
3Unlike our baseline model with one-way complementarity, we might think of the Playstation and

the games exhibiting a two-way complementarity. This arises if consumers analyze the price of games
when they decide which console to buy.
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12.1 Roadmap

In this lecture note, we study how firms choose their good’s features, by focusing on

decisions on quality. Importantly, we use this topic to illustrate the tools of a more

general subject of the microeconomic literature, known as adverse selection (aka

hidden knowledge).

We present a model in which there are several types of consumers, according to their

willingness to pay for quality. Firms do not know the specific type of each consumer, and

even if they do so, they cannot force consumers to buy a specific version of the product.

However, firms do know the distribution of preferences in the population, allowing them

to design a screening device: the goods are presented in different versions, where each of

them is defined as a quality-price pair. The firm designs each version of the good with

the goal that consumers self-select and choose the variety created for their type.

This scenario is compared with a baseline situation, where firms have full information

about consumers and can force them to choose a specific version of the good. Two results

emerge. First, the firm has incentives to downgrade the quality of the version designed for

the consumers with the lowest willingness to pay. Furthermore, there is no distortion

at the top: the quality-price pair for the consumers with the highest willingness to pay

is the same as under full information. Our analysis concludes by providing an application

of this strategy, through the so-called damaged goods.

12.2 Price Discrimination and Arbitrage

So far, our analysis of firms has been based on several simplifying assumptions. In par-

ticular, firms were using the simplest mechanism of pricing we could think of: uniform

pricing. This type of pricing is such that:

[1] different consumers pay the same price, and

[2] each consumer pays the same price for all the units purchased.

188



Mart́ın Alfaro Lecture Note 12. Second-Degree Price Discrimination

Uniform pricing rules out situations such as discounts by units bought or by type of

customer (e.g. students, underage people)—the price is the same for everyone and inde-

pendently of the amount purchased.

In contrast, we say that there is price discrimination when at least one of the

two conditions mentioned does not hold.1 Price discrimination is part of the battery

of instruments that a firm has at its disposal to charge prices closer to a consumer’s

valuation. Typical examples are discounts at the cinemas for retired people or kids

below a certain age. It also encompasses discounts for wholesale purchases. In fact,

there are a plethora of methods to discriminate prices: two-part tariffs (a fee to have

access to the good/service, plus some price for each unit consumed), coupons, differences

in prices if the good is to take or stay, etc.

Price discrimination is not always possible. And, even when it is feasible, identifying

consumer types may only be performed in a restricted way, depending on the industry

characteristics. In particular, its application hinges on

[1] the information about demand that the firm has, and

[2] the possibility of arbitrage.

The first item refers to a consumer’s valuation for each unit of the good. This information

is required to know how much to charge each consumer, and hence it is can be considered

a necessary requirement before engaging in a price discrimination strategy.

Even if the firm knows a consumer’s valuation for each unit of the good, it also needs

to ensure that the consumer pays the price established by the firm. For instance, this

does not occur if reselling is possible: consumers facing lower prices would buy the good

and then resell it to consumers that can only buy the good at a higher price.

1Some authors define price discrimination in a different way. For instance, they argue that consumers
could be paying different prices for other reasons, not related to their valuation. For instance, this
encompasses differences in costs depending on the consumer’s location, or if two varieties are so different
that we can rarely think of them as two versions of the same product. To amend this, they define price
discrimination as when two different units of a good with similar costs and features are sold at different
prices. The main message of this remark is that there is no definition of price discrimination that is
exhaustive and exactly delimits the situations covered.
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12.2.1 Arbitrage

There are two types of arbitrage: commodity and personal. Commodity arbitrage

refers to a scenario where reselling is possible. Its emergence crucially depends on the

characteristics of the good analyzed. For example, services cannot be usually resold

(e.g., a person cannot resell a haircut). When reselling cannot be prevented, the firm is

forced to adopt uniform pricing. Thus, it does not matter the identity of the consumer

or the units she buys, the price would be the same. Why is this? Because otherwise the

price in the market would be the lowest at which the good is available. Any consumer

paying the lowest price can profit from the firm discriminating prices, by reselling units

to consumers paying higher prices. Once the firm incorporates this into its analysis, it is

optimal to maximize profits taking as given that only one price will hold in the market.

Thus, it maximizes its profit subject to a uniform pricing strategy.

In some cases, even when reselling is possible, it is too costly. For instance, consider Costco. You can only buy

products in Costco, if you pay some fee to become a member. In principle, nothing prevents a group of people from

paying one membership and then each shopping by using the same membership. However, organizing this can be

quite complex and time-demanding.

Personal arbitrage can only arise when a firm sells different versions of the same

good. In the literature of differentiated goods, each version of the good is alternatively

referred to as a variety .2 The existence of different varieties of the same good assumes

implicitly that price is not the only feature that the consumer cares about.

The literature usually distinguishes between non-price features that differentiate a good. Vertically differentiated

aspects refer to features where a natural order exists. This means that every consumer would agree on what

constitutes a more preferred feature. For instance, all consumers would agree that a cell phone with a faster

microprocessor or more RAM memory is preferred. This is why vertically differentiated is generally called quality.

In addition, there can be horizontally differentiated aspects, where consumers do not share the same ranking

regarding what is preferred. Continuing with the example of cell phones, consumers have different preferences for

colors, or prefer bigger screens at the expense of less portability.

Personal arbitrage is defined as a situation where firms cannot force a specific con-

sumer to buy a specific version of the good. To demonstrate this, suppose that the firm

2I will use the terms “varieties” and “versions” of the good interchangeably.

190



Mart́ın Alfaro Lecture Note 12. Second-Degree Price Discrimination

has built two different versions of a good. The goal is that consumers of type A acquire

version 1, and consumers of type B buy version 2. When there is personal arbitrage, the

firm cannot prevent type-A consumers from choosing version 2 of the good, or type-B

consumers from choosing version 1.

Under personal arbitrage, it is optimal for the firm to introduce different versions of

the good, so that each consumer self-selects and chooses the version created for her. In

the literature of asymmetric information, this is known as a screening procedure: the

firm chooses each version’s features to induce consumers to reveal their own type when

they buy the good.

One version of the good
(nonprice features not available)

+
Commodity Arbitrage

UNIFORM
PRICING⇒

Potentially more than one version
(nonprice features available)

+
Personal Arbitrage

SCREENING⇒
This note considers a model where there is personal arbitrage, and so firms engage

in a screening procedure. We derive conclusions by comparing its solution against a

baseline situation with no personal arbitrage.

12.3 Setup

We keep assuming the existence of only one firm in the industry. Moreover, we consider

a good that can be differentiated in terms of quality. In the Industrial-Organization

literature, we say that the firm follows a second-degree price discrimination strategy

when a good is quality differentiated, there is personal arbitrage, and the firm engages

in customer screening.
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Remark
Allowing a firm to choose several quality-price pairs is always more

profitable than restricting it to offer only one version. This follows by a revealed-

preference argument. The intuition of this result is that, if we ignore strategic inter-

actions, giving more options to a firm can never reduce its profit. This is

easy to see when we analyze the problem mathematically. A firm offering only one

version of the good is actually a special case of the two-versions case where the firm

produces two identical versions (i.e., with the same quality and price). Ultimately,

these versions are indistinguishable for consumers, and so can be considered as the

same version of the good.

12.3.1 Consumers

When we studied consumer theory, we were implicitly assuming that each good was

available in one version. Due to this, we first need to extend consumer theory to cope

with goods available in several qualities.

With this goal, consider a quasilinear utility function defined over good 1 and good

2. We incorporate two modifications to it: there is a parameter that captures a good’s

quality, and consumers can only buy zero or one unit of the good. The latter is a

standard assumption in the literature, but it is actually a simplification—by no means

it is necessary to account for quality differences.

Formally, let good 1 be the good under analysis, whose consumption space is {0, 1}.

Good 2 is a composite good that represents the rest of the goods in the economy. As we

will show, it plays the role of some outside option in case the consumers decides not to

buy good 1.

The utility function of each consumer is:

U (x1, x2; z, θ) := θu (x1; z) + x2,

where we suppose u (0; z) = u (x1; 0) = 0, u′
x1

> 0, u′
z > 0, and u′′

z < 0. These

assumptions are only added to have a well-defined problem.

The term θu (x1; z) represents the utility derived exclusively from good 1. Likewise,
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the parameter z represents the quality of good 1, while θ represents the consumer’s

subjective valuation of good 1.

Some remarks are in order. First, θ is similar to the parameter A used in consumer

theory to capture appeal under quasilinear preferences. In both cases, a greater value

of θ increases the marginal utility of good 1. This can be seen by noting that U ′
x1

:=

θu′
x1
(x1; z), and so

∂U ′
x1

∂θ
= u′

x1
(x1; z) > 0. But now, a greater value of θ additionally

captures a greater valuation for quality . This is because U ′
z := θu′

z (x1; z) > 0

and so ∂U ′
z

∂θ
= u′

z (x1; z) > 0, reflecting that a higher value of θ increases the utility of one

unit of quality.

The budget constraint with normalizationp2 := 1 entails that x2 = Y −p1x1. Plugging

this term into the utility,

U (x1; z, θ) := θu (x1; z) + Y − p1x1.

The agent consumes either one or zero units of good 1. Thus, denoting u (z) := u (1; z),

and supposing that u (0; z) = 0, the utility function is

U (x1; z, θ) :=

 θu (z) + Y − p1 if x1 = 1

Y if x1 = 0
.

From the perspective of good 1’s industry, Y represents the utility of the consumer’s

outside option: if she decides not to consume good 1, she spends all her income on good

2 and obtains a utility Y
p2
. Given our normalization p2 := 1, this utility is just Y . The

assumption reflects that when p1 is high enough and/or the quality of good 1 low enough,

the consumer might prefer to consume good 2 rather than good 1.

12.3.1.1 The Specific Consumer Setup Used

We have introduced a utility function that accounts for quality differentiated goods.

Nonetheless, second-degree price discrimination is commonly studied through a more

specific utility. We now add some assumptions to be consistent with this literature.

First, since a good’s quality has no intrinsic measure, it is usually supposed that
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u (z) := z. Second, income Y is not included in the utility function when x1 = 1. This

is without loss of generality, since income does not affect the consumer’s decision (it

acts like a constant, and so plays the same role as a monotone transformation). On

the contrary, income is replaced by a parameter U0 in case x1 = 0, which represents

the consumer’s reservation utility: the utility that the consumer gets if she does not

consume good 1. This utility corresponds to the case where good 1 is not consumed,

and all income is spent on good 2. Introducing a parameter U0 makes it clear that this

is the consumer’s outside option.

Incorporating these aspects, we directly consider the following utility function:

U (x1; z, θ) :=

 θz − p if x = 1

U0 if x = 0
,

where we have dispensed with the subscript of good 1’s, since it is the only good under

analysis. From now on, we also normalize U0 := 0.

As for aggregate demand, we suppose that there is a population of agents with

the same utility function, but with different values of θ. Specifically, we consider that

θ ∈
{
θ, θ
}
where θ > θ > 0. Moreover, there is a proportion α of consumers with θ,

and a proportion (1− α) with θ. We refer to them as consumer types. We refer in

particular to consumers with θ as high-valuation types, and those with θ as low-valuation

types. Occasionally, we simply refer to them as high and low types , respectively.

12.3.2 The Firm

To characterize the supply side, we suppose there is only one firm in the industry. This

firm chooses the price and quality of each version of the good. In particular, since there

are two possible types of consumers, it is enough to consider two versions of the good.

These versions are defined as pairs of quality-prices, which we denote by
(
z, p
)
and (z, p).

The notation distinguishes between varieties according to the type of consumer that the

variety is designed for (the first one for low types, and the second one for high types).
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Remark
The firm only decides the quality and price of each version. However,

firms also have to determine the quantities supplied of each, which in this particular

model are either zero or one. For each version, we subsume this decision by including

the possibility of p = ∞ (or some price really high), so that the consumers would not

buy the variety.

Producing a good with some quality z entails costs c (z), where c′ > 0, c′′ > 0, c (0) = 0,

and lim
z→∞

c′ (z) = ∞. The firm’s profit from selling one unit of its product with quality z

and price p is Π (p, z) := p− c (z) per customer.

12.4 Second-Degree Price Discrimination

Once we have established the model setup, we delve into how a firm chooses the price

and quality of each version. In particular, we analyze its decision assuming that the firm

knows the distribution of preferences in the industry, but not the preferences of each

specific consumer. Alternatively, we can suppose that the firm knows the preferences of

each consumer, but it cannot prevent them from buying a specific variety. We refer to

the solution of this scenario as the second-best solution .

We derive conclusions regarding this solution by comparing it with a benchmark sce-

nario. Comparing solutions between two scenarios can be done through a comparative-

statics analysis. This compares an initial situation with another where a parameter has a

different value. Another way, which we follow in these notes, is by comparing solutions in

different contexts. For instance, this is what we do when we compare a market solution

against the solution of a planner that maximizes welfare.

Our benchmark for the second-best solution will be given by the full-information

case. In this scenario, the firm knows the preferences of each consumer, and can force

each to choose a specific variety of the good. We refer to the solution of this problem as

the first-best solution .
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12.4.1 The First-Best Solution

We begin by deriving the optimization problem under full information. In this scenario,

the firm knows each consumer’s type and offers only one specific variety to each consumer.

In other terms, conditional on buying the good, it is the firm, and not the consumer,

who decides the variety to be consumed. Nonetheless, we suppose that the firm cannot

force a consumer to buy the good, so that she could spend her money on other goods.

The optimization problem is:

max
{(z,p),(z,p)}

Π = α [p− c (z)] + (1− α)
[
p− c (z)

]

subject to

 θz − p ≥ 0

θz − p ≥ 0
. (PC)

The inequalities in PC are known as participation constraints. They capture that

the transaction is voluntary, in the sense that a consumer decides whether to buy or not

the product. Conditional on buying the product, the consumer can only buy the version

that the firm offers to her. PC implies that the consumer buys one unit of the good

only if consuming that unit provides more utility than her outside option. Keep in mind

that the reservation utility represents the utility derived from the outside option, which

means that the income is spent on goods from other industries.

The optimization problem is such that it is never optimal to have a slack constraint

(i.e. having one of the PC constraints holding with strict inequality). This occurs

because, as long as consumers buy the good, a firm always finds it optimal to either

increase p or reduce z until each constraint holds with equality.

Since the equations in PC hold with equality, the firm is extracting any potential

gain the consumer can have.3 Thus, each type of consumer ends up with zero utility (or,

more generally, its reservation utility). This occurs since PC makes the price of each

3In formal terms, we would say that the consumer surplus is zero.
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version be equal to the consumer’s valuation of the product.4 Formally,

p = θz,

p = θz.
(PRICE-1)

Plugging PRICE-1 into the objective function, the optimization problem reduces to an

unconstrained optimization with two variables:

max
{z,z}

Π = α
[
θz − c (z)

]
+ (1− α) [θz − c (z)] .

with prices given by PRICE-1. The solution of this problem admits an interior solution,

and so we can use the FOC to identify it:

θ = c′ (z∗) ,

θ = c′ (z∗) .
(FB)

From this, we obtain the intuitive result that z∗ > z∗, which in turn implies that

p∗ > p∗. Expressed in words, it states that the variety consumed by the high-valuation

consumer under full information has a greater quality and price, relative to the variety

consumed by low-valuation consumers.

Since θ > θ, by the FOCs we have that c′ (z∗) > c′ (z∗). Since c′ is strictly convex, then that inequality can hold if

z∗ > z∗.

Regarding prices, by the PC constraints, p∗ = θz∗ and p∗ = θz∗. Since θ > θ and as we have shown that z∗ > z∗,

then p∗ > p∗.

We can also obtain the profit per consumer that the firm gets from each type. The

conclusion in this case is that profits are higher if the firm sells to a high type.

By using the FOCs, the optimal profit the firm gets from a type θ consumer is π∗ (z) :=c′ (z) z − c (z)

Differentiate the expression so that
dπ∗(z)

dz
=c′′ (z) z + c′ (z)− c′ (z) = c′′ (z) z > 0. Therefore, the firm gets greater

profits per capita from high-valuation consumers.

Or by the Envelope Theorem, π (z; θ) := θz − c (z) and so
∂π(z;θ)

∂θ
= z so that evaluating that derivative at the

optimal value we obtain
∂π∗(z;θ)

∂θ
= z∗ > 0.

Want to show that θz− c (z) > θz− c (z). For this, we use that the optimization problem is the sum of two different

optimization problems. Thus, we know that

θz − c (z) > θz − c (z) for any z ̸= z by definition of a maximum. Then, in particular for z = z, we have that

4Notice that this refers to the distribution of gains between the firm and the consumer, without
implying that it is an inefficient solution. In fact, the levels of quality chosen by the firm are the
same that a planner would choose. Remember that efficiency is not necessarily related to distributional
matters.
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θz−c (z) > θz−c (z) and, in turn, θz−c (z) > θz−c (z). Hence, the two inequalities imply that θz−c (z) > θz−c (z).

12.4.2 Insights from the First-Best Solution

Before deriving the second-best solution, let’s first analyze the first-best solution when

the firm now cannot distinguish between consumer types. When this occurs, the firm

cannot force a consumer to choose one specific variety. Consequently, the consumer has

to decide whether to buy the good, and also which variety would she consume.

To grasp some intuition, consider that the firm keeps offering the varieties of the

first-best solution
{
(z∗, p∗) ,

(
z∗, p∗

)}
. This design of varieties is actually not optimal for

the firm, since each type of consumer would select the same variety. In particular, while

low types would still consume the variety with
(
z∗, p∗

)
, high types would have incentives

to deviate and choose the variety designed for the low type. Let’s show this.

As for the low types, she would get zero utility if she buys the bundle with low quality.

This follows by how the bundle was designed, ensuring that PC holds. Now suppose that

she chooses the variety (z∗, p∗), in which case her utility would be U = θz− p. We know

that θz − p = 0 by PC, and so θz − p < 0 since θ > θ. Given that this utility is lower

than than the utility given by variety
(
z∗, p∗

)
, a low-valuation consumer would

still choose the low-quality variety.

Now, consider a high-valuation consumer. If she chooses the variety with high-quality,

her utility would be zero due to PC. On the contrary, if she chooses the variety
(
z∗, p∗

)
,

she would a get a level of utility U = θz − p. But we know that θz − p = 0 by PC, and

then θz−p > 0 since θ > θ. Therefore, high-valuation consumers would consume

the low-quality good . Intuitively, the price premium charged for a quality upgrade

is too high, given the differences in quality between both goods. Since high types have

incentives to mimic the behavior of low types, the firm needs to redesign the varieties

offered. We summarize this outcome in the following result.
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Result 12.1 Suppose that the firm does not know the type of each consumer, and

offers to each the menus
{
(z∗, p∗) ,

(
z∗, p∗

)}
of the first-best solution. Then,

� low-valuation consumers would choose the low-quality variety, and

� high-valuation consumers would choose the low-quality variety.

Therefore, high-valuation consumers have incentives to mimic the behavior of low-

valuation consumers.

To illustrate the result, suppose that Apple launches a new iPhone, and this comes in two

versions: basic and deluxe. Both versions are identical, except that the deluxe version

has one additional gigabyte of RAM memory. In this sense, although the quality of

the deluxe version is greater, the difference is not quite pronounced. Instead, the prices

charged by Apple for each version are astronomically different: the basic version is just

800 dollars, while the deluxe version costs 2,500 dollars. If this were Apple’s pricing

strategy, high-valuation consumers would consider that the greater quality of the deluxe

version does not justify paying that exorbitant price. Thus, all types of consumers would

end up buying the basic version of the iPhone.

We might suspect that the optimal strategy for Apple would require reoptimizing the

levels of quality and price of each version. In other words, it seems plausible that Apple

may get higher profits by reoptimizing, under the constraint that consumers can choose

which variety to consume. We will show below that this is indeed the case.

Two types of solutions can arise, depending on the values of the parameters. Either it

is optimal to design only one variety to be exclusively consumed by the high types, or to

design varieties to serve both consumer types but making each self-select. In the latter

case, we say that the optimal strategy is establishing a screening procedure : offer

different varieties, such that high-valuation consumers choose the high-quality variety

and low-valuation consumers choose the low-quality one.

Mathematically, relative to the full information case, the optimization requires adding

incentive-compatible constraints. They ensure that no agent prefers the variety that

was not designed for her, by asking that the utility of the variety designed for her type
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is greater than the utility of buying the other variety. For example, the incentive-

compatible constraint for the high type is θz− p ≥ θz− p, so that the utility of choosing

the variety (z, p) is greater than consuming the variety
(
z, p
)
.

12.4.3 The Optimization Problem for the Second-Best Solution

The firm’s optimization problem is now:

max
{(z,p),(z,p)}

Π = α [p− c (z)] + (1− α)
[
p− c (z)

]
subject to θz − p ≥ 0

θz − p ≥ 0
(PC)

 θz − p ≥ θz − p

θz − p ≥ θz − p
. (IC)

We will not use the Kuhn-Tucker technique to solve the optimization problem. In-

stead, we use an alternative approach, commonly employed in the textbooks of this

topic. The procedure follows three steps. First, we show that some of the constraints are

either redundant or hold with equality. After this, we optimize the objective function

incorporating the constraints that hold with equality, but ignoring those holding with

a strict inequality. Finally, we obtain the solution, and check that the constraints with

strict inequality are indeed satisfied.

Remark
To keep notation simple, we refer to the constraint of each type by using

a bar above or below. Thus, for example, the constraints for the high type are
(
PC
)

and
(
IC
)
, which are given by the first inequalities in PC and IC.

For the derivation of the properties we present next, it is assumed that any previous

property already proved holds.

Property 1. The
(
PC
)
does not bind. Moreover, if we check that

(
IC
)
and (PC)

hold, then
(
PC
)
holds automatically.
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(OPTIONAL) It is enough to show that when
(
IC
)
and (PC) hold, then

(
PC
)
cannot bind. This is because

(
IC
)

and (PC) have to be satisfied at the solution.

Formally, we want to show that since θz − p ≥ θz − p and θz − p ≥ 0 then θz − p ≥ 0.

By
(
IC
)
, we know that θz−p ≥ θz−p. Also, since θ >θ, then the LHS of the inequality is such that θz−p > θz−p.

But, given that (PC) has to hold, the RHS of the last inequality is such θz − p ≥ 0. So we can conclude that

θz − p ≥ θz − p > 0 so that θz − p > 0 which implies that
(
PC
)
cannot hold with equality.

Property 2. The
(
IC
)
binds.

(OPTIONAL) I provide a proof by contradiction. We are going to show that if
(
IC
)
holds as a strict inequality,

then the firm can always find a better solution (that is, a solution that gives more profits and at the same time

satisfies all the other constraints). Thus a nonbinding
(
IC
)
is inconsistent with a maximization program.

If
(
IC
)
does not bind, it means that θz − p > θz − p. I will show that the firm could charge a higher price to

the high-valuation consumers and this would not violate any of the constraints. This implies that p cannot be the

solution to the problem since it does not maximize profits.

Thus, consider that instead of charging p now it considers charging p+ δ where δ > 0 is small enough so that
(
IC
)

still holds as an inequality. Thus θz − (p+ δ) > θz − p. Since
(
PC
)
does not bind, we can also choose δ such that(

PC
)
holds.

Moreover, we will show that (IC) is not violated when p + δ is set. With a price p, the constraint was holding so

that θz − p ≥ θz − p and so the LHS is such that θz − p > θz − (p+ δ), implying that θz − p > θz − (p+ δ). The

intuition is that if the low-valuation consumer was not choosing the high-quality good with prices p, she will have

even less incentives to do so if now the price is p+ δ.

Finally, (PC) is independent of the price charged for the high quality good, so it will hold irrespective of the value

of p.

Therefore, the firm would get more profits with p+ δ and this is feasible. Thus, a p that makes
(
IC
)
hold with strict

inequality cannot be part of a solution.

Property 3. The (IC) holds iff z ≥ z.

(OPTIONAL) We show that (IC), which is θz− p ≥ θz− p, is equivalent to q ≥ q. This follows because
(
IC
)
binds

and so θz − p = θz − p.

θz − p ≥ θz − p ⇔θz − p−
(
θz − p

)
≥ θz − p−

(
θz − p

)
because both terms in brackets are equal. Thus

⇔ θz − θz ≥ θz − θz

⇔
(
θ − θ

)
(z − z) ≥ 0

and, since
(
θ − θ

)
< 0,

⇔z ≥ z.

Property 4. The (PC) binds.

(OPTIONAL) I also provide for this case a proof by contradiction. Suppose that (PC) does not bind so that

θz − p > 0. We will show that this is not consistent with a solution. Specifically, we will show it is always possible

to choose a p+ δ that is feasible and constitutes a better solution relative to choosing p.

First, since θz − p > 0, we can always define a δ > 0 small enough so that the (PC) would still hold. Also, p does

not affect
(
PC
)
. Besides, since (IC) holds iff z ≥ z, then (IC) is independent of the price charged p. Finally,

(
IC
)
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is such that θz − p ≥ θz − p which implies that θz − p ≥ θz −
(
p+ δ

)
because δ > 0.

But by charging p + δ instead of p, the firm would obtain greater profits. Thus, (PC) cannot hold as an strict

inequality at the solution.

Incorporating these properties, the optimization problem becomes

max
{(z,p),(z,p)}

Π = α [p− c (z)] + (1− α)
[
p− c (z)

]

subject to


(PC) : θz − p = 0(
IC
)
: θz − p = θz − p

z ≥ z

.

We have not added the constraint
(
PC
)
, since it is automatically satisfied by Property

1 once we check that
(
IC
)
and (PC) hold.

Before we solve the optimization problem, we state a conclusion that follows from a

simple inspection.

Result 12.2 Low-valuation consumers obtain the same utility as in the first-best

solution. On the contrary, high-valuation consumers are always better off relative to

the first-best solution.

Low-valuation consumers obtain the same utility since (PC) holds with equality in both

problems. Regarding high-valuation consumers, notice that p = θz by (PC). Plugging

this into
(
IC
)
we obtain that:

θz − p =
(
θ − θ

)
z > 0

This implies that the firm cannot extract the whole surplus from this consumer type.

Rather, the firm has to let this type obtain some additional utility
(
θ − θ

)
z, so that she

she self-selects. In the literature’s terminology, high-valuation consumers have private

information, and the firm can only induce them to elicit their type by providing some

information rent . Only by letting them enjoy some extra utility is that the consumer

would stop mimicking the behavior of low-valuation consumers.

202



Mart́ın Alfaro Lecture Note 12. Second-Degree Price Discrimination

12.4.4 The Second-Best Solution

The optimization problem can be further simplified by plugging the two constraints that

hold with equality into the objective function. Thus

max
{z,z}

Π = α
[
θz − c (z)−

(
θ − θ

)
z
]
+ (1− α) [θz − c (z)]

subject to z ≥ z.

We use that p = θz and so
(
IC
)
can be reexpressed as θz − p = θz − θz so that p = θz −

(
θ − θ

)
z. Plugging both

into the profits function, Π = α
[(

θz −
(
θ − θ

)
z
)
− c (z)

]
+ (1− α) [θz − c (z)] which gives the result.

The problem has two possible types of solutions, depending on the value of θ relative

to αθ. The first solution holds when θ > αθ. It provides an interior solution where both

types of consumers are served. The second solution occurs when θ < αθ and entails that

only the high-valuation consumers are served.

We show that when θ < αθ, then there is a corner solution for the low quality good., take ∂Π
∂z

= −α
(
θ − θ

)
+ θ −

αθ − (1− α) c′ (z) which can be reexpressed as

∂Π
∂z

= θ − αθ − (1− α) c′ (z). By assumption, c′ (z) = 0 iff z = 0, and for any z > 0 we have that c′ (z) > 0.

Therefore, if θ < αθ then ∂Π
∂z

< 0 for any z and so the firm has incentives to set the lowest value of z possible which

is zero.

Since the first case has an interior solution, we can characterize it by the FOCs:

θ = c′ (z) ,

θ − c′ (z) =
α

1− α

(
θ − θ

)
. (SDPD-HL)

On the contrary, the solution where only the high-valuation consumers are served is:

θ = c′ (z) , (SDPD-H)

z = 0,

where we suppose that p > 0, so that low-valuation consumers prefer their outside option

rather than to consume the good.5

5Any combination
(
z, p
)
such that the low type gets a utility lower than her reservation utility would

work. The solution only has to ensure that low types do not consume any of the varieties available.
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Comparing the solutions FB and SDPD-HL, we obtain the following conclu-

sion:

Result 12.3 Suppose that firms cannot distinguish between consumer types and

engage in second-degree price discrimination. Then, the variety for high-valuation

consumers has the same quality as under full information, but the quality of the

variety for low-valuation customers is reduced. This result is known in the literature

as no distortion at the top.

Suppose the solution given by equations SDPD-HL. θ = c′ (z) is the FOC for high-valuation consumers in both

scenarios. Hence, z∗ = z∗∗. Regarding low-valuation consumers, under complete information the FOC is θ −

c′ (z∗) = 0 while under SPDP θ − c′ (z∗∗) = α
1−α

(
θ − θ

)
. This implies that θ − c′ (z∗∗) > θ − c′ (z∗) and so

c′ (z∗) > c′ (z∗∗). Given that c is strictly convex, then c′′ > 0 and so the first derivative is increasing. This implies

that c′ (z∗) > c′ (z∗∗) ⇔ z∗ > z∗∗.

Now, suppose the solutions given by equations SDPD-H. Then, θ = c′ (z) is the FOC for high-valuation consumers

in both scenarios, so that z∗ = z∗∗. In the case of low-valuation consumers, the FOC θ− c′ (z∗) = 0 under complete

information determines that z∗ > 0 while if the firm does not serve the consumer as in SDPD-H then z∗∗ = 0. Thus,

the firm decreases the low quality of the good such that no consumer wants to get that version of the good.

12.5 An Application: Damaged Goods

We provide several examples of a strategy commonly pursued by firms: the introduction

of damaged goods. This means that a company launches some lower quality versions of

the original good, but without these varieties having lower costs. Usually, it occurs when

all the versions of a good are simultaneously produced, but the company subsequently

disables some of the good’s features.

In the 90s, Sony created the MiniDisc, which was a smaller version of the compact

disc. These discs were not able to store any other type of information that was not music.

Moreover, its format had a storage capacity measured by minutes of music. Sony offered

two versions of blank MiniDiscs: one of 60 minutes and another of 74 minutes. Both

disc versions were produced identically and were able to potentially store 74 minutes of

music. However, Sony was deliberately adding some line in the firmware that prevented

recording beyond 60 minutes in one of the versions. Thus, the 60-minutes disc was
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identical to the 74 minutes version, but disabling part of the storage space. 6

A similar strategy was pursued by IBM with its LaserPrinter E. One of its versions

was identical to the regular model, but with a firmware slowing down the printing speed.

Specifically, the code was modified to introduce waiting times between pages, resulting

in about half the speed of the regular printer.

Another example involves the statistical software Stata. The company exploits that

it is not an open-source product, so that the software’s code cannot be modified by the

customer. Its cheapest versions are actually damaged versions of the full version: they

add restrictions in the number of core processors that the computer are allowed to use,

and has restrictions in the number of variables that it is allowed to handle.

6One of the reasons for Sony to do this was to engage in a second-degree price discrimination.
Another motive could be the existence of economies of scale when each version is produced using the
same technology. Suppose the case we studied in the course, where there exists a fixed cost but,
conditional on producing positive quantities, marginal costs are constant. Then, Sony could be able
produce both varieties in the same process, and thus reduce average costs by exploiting a greater scale
of production.
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13.1 Introduction

In this lecture note, we start the study of Noncooperative Game Theory. In particular,

we prepare the ground for the analysis of simultaneous-move games. They represent

games where each player only moves once and without knowing what other players have

chosen. Formally, we will see that simultaneous-move games refer to static games with

imperfect information. In subsequent lecture notes, we’ll focus on our ultimate goal: to

model games and derive a prediction of how they will be played.

13.2 Describing a Game

What is a game? Although we may be tempted to associate it with ludic interactions, its

definition is in fact more general. It refers to any situation where agents are aware of the

externalities that they impose on each other. In other terms, each player obtains a payoff

that depends on her own actions, but also on what others choose. Once agents internalize

this, they behave strategically. In this sense, strategic behavior is a consequence, rather

than a defining element of a game.

There are four elements that describe a game:

[1] The players

[2] The rules

[3] The outcomes

[4] The payoffs

The rules of the game comprise any information describing the interaction between

agents. It includes elements such as the choices available, the information they have

at the moment of making a move, the timing of moves, etc.

Te literature additionally distinguishes between outcomes and payoffs. The latter

represents an assessment of the outcomes through a utility function. Basically, the same
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outcome might entail different payoffs, depending on the player’s preferences. How-

ever, this distinction is not particularly relevant for our purposes—it only affects games

involving uncertainty, which are not part of this course.

The usual approach to account for uncertainty in games is to allow for a fictitious player called Nature. This “player”

assigns some probability distribution to each possible sub-tree that could be played. A move by Nature gives rise to

the so-called games of incomplete information.

Next, we establish some formal terminology regarding games. We suppose there is a

number of I players. Let player i’s space of strategies be Si. Given a strategy si ∈ Si for

each player i, a profile of strategies is a vector (si)
I
i=1, with the space of strategy profiles

being S := ×I
i=1Si.

It is common to use the notation s−i := (si)i ̸=i, which refers to the vector strategies

chosen by each player that is not i. This allows us to denote a profile of strategies by

(si, s−i) and the space of strategy profiles by Si × S−i. The notation comes in handy

when we focus on player i’s choices.

Each profile of strategies determines an outcome for player i, assessed by a utility

function ui. Given a profile (si, s−i), the payoffs are ui (si, s−i).

Remark
In this lecture note, I will not distinguish between actions and strategies.

Although they are conceptually different, these concepts can be considered equivalent

in games of simultaneous moves.

To illustrate the terminology introduced to represent a game, we consider the Prisoner’s

Dilemma as an example. Since we are not interested in the game itself, we will just

characterize its properties, rather than the situation itself.

Remark
In general, we will denote players with numbers in brackets. Thus, for

instance, (1) refers to player 1. In the case of two players, I will use “she” for player

(1) and “he” for player (2).

There are two players, (1) and (2), which have to make a decision without knowing what
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the other player has chosen. The possible actions are “to cooperate” (denoted C) or

“not to cooperate” (denoted NC).

13.2.1 Extensive Form Representation

There are two types of representations of games. The first one is the extensive form.

This is illustrated in Figure 13.1, which is the tree representation of the Prisoner’s

Dilemma.

(1)

(−4,−4)

C

(−5, 0)

NC

C

(0,−5)

C

(−1,−1)

NC

NC

(2)

Figure 13.1

Each solid dot is a decision node. It represents an instance of the game where a

player has to make a move. Nodes where the game ends are called terminal nodes. They

are represented by non-filled dots and indicate the payoff that each player gets. Recall

that a payoff is an outcome evaluated through a player’s utility function.

Remark
We use the convention that each payoff (a, b) is such that a represents

(1)’s payoff, while b is (2)’s payoff. This also applies to the normal form represen-

tations that we present below.

In the game under analysis, each player has to make a move, without knowing what the

other player has decided. In Figure 13.1, this can be clearly observed for (1): the game

starts when she makes a move, and so she does not know what (2) will choose. The fact

that neither (2) knows what (1) chose is indicated by the dashed oval. Formally, the
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player is unable to distinguish between the nodes comprised by the dashed oval, because

he does not observe (1)’s choice.

More technically, we call information sets to the possible set of nodes where the

player makes a choice. For instance, (1) has an information set where only one node is

possible. On the contrary, (2) has an information set with two nodes, since (1) could

have chosen either C or NC. This gives rise to the definition of perfect and imperfect

information in a game.

Definition 13.1: A game of perfect information is such that all the information sets

have only one node (i.e., the information sets are singletons). A game of imperfect

information has at least one information set with more than one decision node.

Based on this, we define a simultaneous-move game as one where all players make

their moves under imperfect information. This captures that players do not know what

others have chosen when they decide.

13.2.2 Normal Form Representation

Another game representation is its normal form. This is the one we will use for

simultaneous-move games, and is visually illustrated in Figure 13.2 for the Prisoner’s

Dilemma.

(2)
C NC

(1) C −4,−4 −5, 0
NC 0,−5 −1,−1

Figure 13.2

The normal form provides information about each player’s strategies and their cor-

responding payoffs. It abstracts from other pieces of information, such as the timing,

knowledge of other players’ moves, etc. These details are irrelevant in simultaneous

games, but are crucial for more complex games. This is why normal form representa-

tions are an inaccurate description for games that are not simultaneous. However, only
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the mapping between choices and payoffs is relevant for simultaneous-move games, which

are our focus.

13.3 Solutions Concept

We next endow players with some behavioral assumptions, with the goal of predicting

how the game will be played. A set of assumption and its corresponding predictions are

referred to as a solution concept.

We start by imposing some mild assumptions, and show that they are enough to

get a unique prediction in simple games. For other games, the predictions under these

assumptions are too broad, and in some cases we cannot even rule any possible solution.

Due to this, we refine the solution concept by sequentially adding more assumptions.

Following this procedure, we will end up with the so-called Nash equilibrium as a solution

concept.

The examples we will use are not particularly relevant at this point. They are abstract

games, and so we do not describe the type of situation captured. Their goal is just to

show the role of the assumptions in each solution concept.

13.3.1 Rationality

Let’s start by solving the game of Figure 13.2. We focus on player (1)’s decision, since

the analysis for player (2) is analogous.

We will show that this game is quite simple, and we can predict a solution with

a minimal assumption: each player maximizes her own utility. We will refer to this

assumption as saying that each player is rational.

The payoff that (1) gets depends not only on what she chooses, but also on (2)’s

choice. She does not know (2)’s decision, and notice (1) is not making any assumption

regarding (2)’s behavior. Put it differently, we assume that each player is rational,

but we do not assume that each player considers her rival as rational.
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Under the assumption that (1) is rational, we can analyze what she chooses, de-

pending on her conjectures about (2)’s choice. In this way, we analyze (1)’s choice that

maximizes her utility, for each possible decision of (2).

Suppose that (2) chooses C. Then, (1) knows she would get −4 if her choice is C,

and 0 if she chooses NC.. Therefore, (1) would prefer to choose NC if she knew that

(2) chooses C. Suppose now that (2) chooses NC. Then, (1) would −5 if her choice is

C, and −1 if she chooses NC. Thus, it would be optimal for (1) to choose NC if (2)

chooses NC.

The previous analysis has shown that, even when (1)’s payoff depends on what (2)

chooses, it is always optimal for (1) to choose NC. That is, irrespective of what (2)

chooses, the best she can do is to choose NC. Consequently, we can predict what (1)

will play if we only assume that she is rational, even when (1)’s payoffs depend on what

(2) does. A similar analysis could be made for (2)’s choice. The conclusion would be

that NC maximizes his utility, irrespective of what (1) chooses.

The main conclusion is that rationality allows us to obtain a prediction for this game

in particular. Rationality in the context of game theory means that agents do not play

strictly dominated strategies. Strategy s′′i is strictly dominated for player i if there

exists a strategy s′i such that s′i provides a greater payoff, irrespective of what the rest

of players choose. Formally, s′′i is strictly dominated for player i by si’ when

ui (s
′
i, s−i) > ui (s

′′
i , s−i) for all s−i ∈ S−i

Remark
Notice that a strictly dominated strategy s′′i has to provide a strictly

lower payoff. We do not consider that s′′ is weakly dominated, i.e. that there exists

some strategy providing the same utility for at least one rivals’ strategy). If s′′ is

only weakly dominated, we cannot rule out that s′′i will be played. In fact, eliminating

weakly dominated strategies from a player’s considerations can lead to some issues.

For instance, the game prediction could end up depending on the order in which

players eliminate strategies.

Based on the concept of strictly dominated strategies, we define our first solution concept.
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Solution Concept 1 Rationality of Each Player. We suppose that each player

is rational. Agents are rational when they do not play strictly dominated strategies.

The fact that agents do not play strictly dominated strategies only rules out strategies

that will be played. In other terms, the solution concept is not based on what players

will choose, but what they will not choose. Thus, we can only have a prediction for

the game if the elimination of dominated strategies results in a unique strategy for each

player.

In cases like the Prisoner’s Dilemma, or any game with a similar structure to ??,

rationality is enough for having a unique prediction. This is so because each player i

has a strategy s∗i that strictly dominates any other strategy s′i ∈ Si with s′i ̸= s∗i . When

this occurs, we say that s∗i is a strictly dominant strategy for player i. Notice that

the existence of a strictly dominant strategy s∗i is equivalent to all the strategies s′i ̸= s∗i

being strictly dominated.

In summary, the result in the Prisoner’s Dilemma is quite robust because we get

a unique prediction by simply assuming rationality of players—no need to make any

assumption on the players’ conjectures about rivals . This does not imply that what

rivals do is irrelevant. The final outcome still depends on what others do. However,

players can choose optimally without information on how rivals behave. This is why

whether rivals are rational or not (or, actually, any other feature of them) is irrelevant

for identifying a player’s best action.

The downside of Solution Concept 1 is that we could end up with a plethora of possible

solutions. Indeed, games where each player has a dominant strategy are the exception,

rather than the rule. And it could be argued that Game Theory is actually irrelevant for

these situations, since the approach would not differ from a simple utility-maximization

procedure.

To demonstrate what occurs when not all players have a strictly dominant strategy,

consider the game in Figure 13.3.
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(2)
D E

A 2,−2 −2, 2
(1) B −2, 2 2,−2

C −3, 6 −4, 4

Figure 13.3

In this game, we can rule out that (1) plays C, because C is strictly dominated by

A and B. However, this is the only choice we can eliminate for any player. Hence, the

game prediction is that (1) will choose either A or B, and (2) either D or E.

13.3.2 Iterated Elimination of Strictly Dominated Strategies

To get sharper predictions of a game, we refine the solution concept. This means

that we start from Solution Concept 1 and add assumptions. Thus, we will still assume

the rationality of players. Consider the game in Figure 13.4

(2)
L M R

(1) U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0

Figure 13.4

Let’s see what we can eliminate by only considering the rationality of each player.

Player (1) has no strictly dominated strategies. If (2) chose L or M , the best move

would be U , while D is (1)’s best choice if (2) played R. On the contrary, R is strictly

dominated by M for player (2). This is because if (1) plays U , then M provides 2 as

payoff, while R just 1; instead, (1) plays D, then M provides 1 and R just 0.

Consequently, by only assuming rationality, we can predict that (1) plays either U or

D, and (2) plays either L or M . The normal representation of the game incorporating

this is as in Figure 13.5.
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⇒
(2)

(1)

L M R
U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0

(2)

(1)

L M
U 1, 0 1, 2
D 0, 3 0, 1

Figure 13.5

If our goal is to obtain sharper predictions for this game, it is necessary to make fur-

ther assumptions. Starting from Figure 13.5, there are no strictly dominated strategies,

meaning that a player’s optimal choice depends on what others choose. Due to this, we

need to assume what players conjecture regarding what rivals will choose. This entails

that each player must assume the rivals’ goals, how they process information, etc. In

other words, a player needs to have conjectures about some matters related to how rivals

decide.

Since we are already assuming rationality of each player, it is natural to extend this

assumption as a player’s conjecture about her rivals. In other words, let’s consider that

each player is rational and conjectures that their rivals are too.

To see how this affects the game’s prediction, let’s start considering that player (1)

assumes (2) is rational. Now, (1) will analyze the game as (2) did before, knowing that

(2) would not play R. Thus, (1) will decide by taking Figure 13.6 as the relevant game.

Incorporating this, D is strictly dominated by U for player (1), implying that the game

in its normal form would be:

⇒
(2)

(1)

L M
U 1, 0 1, 2
D 0, 3 0, 1

(2)

(1)

L M
U 1, 0 1, 2

Figure 13.6

So, we could predict that (1) would choose U . What about player (2)? So far, we

have only assumed that he is rational, and that (1) is rational and supposes that (2) is

rational. But, we have not established that (2) makes any assumption regarding (1).
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Suppose that (2) conjectures that (1) is rational and that (1) knows that he is rational.

In that case, (2) considers that (1) does not play strictly dominated strategies. Thus,

(2) will conclude that (1) expects to play the game in Figure ??, and so (1) will play U .

Once (2) arrives at that conclusion, his choice would be M , which gives him a payoff of

2 relative to playing L and get 0. In summary, under the assumptions made, the game

prediction is (1) playing U and (2) choosing M .

⇒
(2)

(1)
L M

U 1, 0 1, 2

(2)

(1)

M
U 1, 2

Figure 13.7

Let’s translate the intuition of this example into a formal solution concept. After

eliminating strategies strictly dominated in Figure ??, each step of the game pushes

further the assumption of the rival’s rationality. A generalization needs to allow us to

iteratively eliminate strictly dominated strategies as many times as we want. This can

be accomplished by requiring that rationality and the structure of the game are common

knowledge. A fact is common knowledge when the fact holds, players know that the fact

holds, players know that players know the fact holds, and so on ad infinitum.

Solution Concept 2 Iterated Elimination of Strictly Dominated Strate-

gies (IES for short). When agents are rational, and this and the structure of the

game are common knowledge, strictly dominated strategies can be iteratively re-

moved.

Remark
One appealing feature of IES is that the order in which we eliminate

strategies does not affect the set of surviving strategies.

Even when IES can narrow the prediction of games, it still might lead us to inaccurate

predictions about a game. One example is the following game, where any action ends

up being possible.
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(2)

(1)

L C R
T 0, 4 4, 0 5, 3
M 4, 0 0, 4 5, 3
B 3, 5 3, 5 6, 6

Figure 13.8

13.3.3 Rationalizable Strategies

So far, the solution concepts used were based on strictly dominated strategies. Next,

we derive a solution based on an alternative concept, referred to as best response. This

will take us to the concept of rationalizable strategies, which rely on the existence of

conjectures to justify playing a strategy.

13.3.3.1 Some Preliminaries

Let’s begin by adding some definitions. The set of best response strategies (BR) to

a strategy s′−i is defined as:

BRi

(
s′−i

)
:=
{
si ∈ Si : ui

(
si, s

′
−i

)
≥ ui

(
s′i, s

′
−i

)
for all s′i ∈ Si

}
This means that, if i considers that her rivals will choose s′−i, she will opt for a strategy

si ∈ BRi (s−i). This strategy provides the greatest utility given the conjecture s′−i.

Quite related to this, it is the set of never best responses (NBR). This is the set

of i’s strategies with no conjecture about what others do that justifies its use. Formally,

NBRi :=
{
si ∈ Si : ∄s′−i such that ui

(
si, s

′
−i

)
≥ ui

(
s′i, s

′
−i

)
for all s′i ∈ Si

}
.

The definition of si ∈ NBRi is equivalent to si /∈ BRi

(
s′−i

)
for any s′−i ∈ S−i. This leads

us to an important definition: a player is Bayes rational if she does not play strategies

that are NBR.

Notice that a strictly dominated strategy is NBR, but a NBR strategy is not necessarily

strictly dominated . We illustrate this through the following example.
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Example

Consider the game in Figure 13.9, where we have only specified the payoffs of player (1).

The payoffs of (2) are irrelevant for making the point.

(2)

(1)

D E
A 3, · 0, ·
B 0, · 3, ·
C 2, · 2, ·

Figure 13.9

Figure 13.9 establishes that BR1 (D) = A while BR1 (E) = B. In plain words, A is

(1)’s BR if she thinks that (2) plays D: while A provides a utility of 3, B gives a utility

of 0 and C a utility of 2. A similar reasoning shows that B is (1)’s BR to (2) choosing

E.

From this, we conclude that C ∈ NBR1, since there is no conjecture about what (2)

chooses that justifies (1) playing C. However, C is not a strictly dominated strategy: C

provides a higher payoff than B if (2) plays D, and a higher payoff than A if (2) plays

E.

13.3.3.2 Determining the Set of Rationalizable Strategies

Based on the concept of NBR, we introduce a new solution concept: rationalizable

strategies. Just like with IES, the idea is to iteratively eliminate strategies that are

NBR.

Solution Concept 3 Rationalizable Strategies. When agents are Bayes ratio-

nal, and this and the structure of the game are common knowledge, NBR strategies

can be iteratively removed.
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Remark
Similar to IES, the set of rationalizable strategies does not depend on

the order in which we eliminate the NBR strategies.

Consider the game in Figure 13.10.

(2)

(1)

b1 b2 b3 b4
a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 3, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 2 0, 0 0, 0 5, 1

Figure 13.10

You can check that this game has no strictly dominated strategies. Furthermore, all

the strategies of (1) are rationalizable, which means there are no NBR strategies for (1).

On the contrary, b4 is a NBR for (2), since there is no conjecture that leads (2) to play

b4.

The set of BR for (1) is:

� BR1 (b1) = a3

� BR1 (b2) = a2

� BR1 (b3) = a1

� BR1 (b4) = a4

and so all the strategies are BR for some strategy of the rival player.

The set of BR for (2) is:

� BR2 (a1) = b1

� BR2 (a2) = b2

� BR2 (a3) = b3

� BR2 (a4) = b1

and so b4 is NBR because there is no action of (1) such that it justifies that (2) chooses b4.

Incorporating that b4 is a NBR, the representation of the game is as in Figure 13.11.
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⇒
(2)

(1)

b1 b2 b3 b4
a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 3, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 2 0, 0 0, 0 5, 1

(2)

(1)

b1 b2 b3
a1 0, 7 2, 5 7, 0
a2 5, 2 3, 3 3, 2
a3 7, 0 2, 5 0, 7
a4 0, 2 0, 0 0, 0

Figure 13.11

Given the assumption of common knowledge, (1) knows that (2) will not play b4. This

allows us to eliminate a4 from (1)’s consideration: a4 was a BR only to the conjecture

b4, but this will not be played by (2). In other words, a4 is not a BR to any strategy

that survived the elimination of NBRs. Incorporating this result, the relevant game is

Figure 13.12.

⇒
(2)

(1)

b1 b2 b3
a1 0, 7 2, 5 7, 0
a2 5, 2 3, 3 3, 2
a3 7, 0 2, 5 0, 7
a4 0, 2 0, 0 0, 0

(2)

(1)

b1 b2 b3
a1 0, 7 2, 5 7, 0
a2 5, 2 3, 3 3, 2
a3 7, 0 2, 5 0, 7

Figure 13.12

Since now all the strategies are BRs to some conjecture, each player’s set of rational-

izable strategies is:

� {a1, a2, a3} for player (1)

� {b1, b2, b3} for player (2).

13.3.3.3 Interpreting the Rationalizable Strategies

Rationalizable strategies are the set of strategies remaining after an iterative removal of

NBR. This has two implications. First, a player can always “justify” her action, since she

is giving a BR to some conjecture. However, notice there is another important property
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of rationalizable strategies: any player can “justify” her conjectures. In fact, we can keep

this reasoning ad infinitum, in the sense that the conjectures can be justified by some

rationalizable conjecture. To illustrate this, consider the same again as before, whose

relevant strategies after the iterative deletion of NBR are presented in Figure 13.13.

(2)

(1)

b1 b2 b3
a1 0, 7 2, 5 7, 0
a2 5, 2 3, 3 3, 2
a3 7, 0 2, 5 0, 7

Figure 13.13

Consider how (1) can justify her choice a1. She plays a1 because she conjectures that

(2) will play b3. But why does (1) believe that (2) will play b3? Because (1) thinks

that (2) believes that (1) will play a3. And (1) could be thinking this, if she expects

that (2) will play b1, which in turn can be justified if (1) plays a1. After this, a loop of

justification is created. Graphically, the chain of justifications is as in Figure 13.14.

Figure 13.14. Rationalizable Strategies- Chain of Justifications

(a) a1

a1 b3 a3 b1

(b) a2

a2 b2

(c) a3

a3 b1 a1 b3

13.3.4 Nash Equilibrium

Consider Figure 13.14, which provides several examples of rationalizable strategies. Fig-

ure 13.14b reveals that the actions a2 and b2 have a distinctive feature. Player (1) can

justify a2 because she expects that (2) plays b2. In turn, (2) would play b2 because he

expects that (1) plays a2. This determines that the conjectures are “correct”, in the
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sense that what players conjecture is what actually takes place. Put it differently, each

strategy of the pair (a2, b2) is a BR to what the rival is choosing. This leads to the most

relevant solution concept we will use.

Solution Concept 4 Nash Equilibrium. A strategy profile is a Nash equilibrium

when each strategy is rationalizable and based on “correct” conjectures.
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13.4 Exercises

[1] Suppose the following game:

(2)

(1)

D E
A (α, β) (γ, 2)
B (1, 1) (1, 0)
C (3, 2) (0, 1)

where all Greek letters are parameters. Determine the range of values of α, β and

γ such that:

(a) A is a strictly dominated strategy.

(b) C is a rationalizable strategy.

(c) (A,D) is a NE.

(d) All the strategies are rationalizable.

[2] Suppose the following game:

(2)

(1)

L M R
U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0

Establish the game prediction, according to the following assumptions.

(a) Each player is Bayes rational

(b) Each player is Bayes rational, and (1) supposes that (2) is Bayes rational

(c) Each player is Bayes rational, (1) supposes that (2) is Bayes rational, and

(2) knows all this (that is, (2) knows that (1) is Bayes rational and that (1)

supposes that (2) is Bayes rational).

(d) Identify the rationalizable strategies and the NE in this game.

[3] We’ll consider a situation that resembles the Tug of War in several respects. The

aim is that you learn how to partition strategy profiles to find a game’s Nash

223



Mart́ın Alfaro Lecture Note 13. Game Theory

equilibria. To be as intuitive as possible, let’s consider a game that has me and all

of you as players.

Suppose I sent you an email last Monday with an exercise, and offered you extra

points to boost your grade. You can submit a solution to my mailbox by Friday,

and there’s no penalty if a student does not submit a solution. However, the extra

points are only available for one student. Thus, I establish the following rule. I’ll

be checking my mailbox on Friday. If I find only one correct solution, I’ll give

the extra points to that person. However, if there’s more than one student with a

correct solution, I won’t give any extra points to anyone—I’m worried about the

possibility that students actually cheated and copied the solution.

The actions available to you are S and NS, which stands for “to submit” and “not

to submit”. Suppose that you want to play fairly and won’t discuss the solution

with your classmates. Thus, you have to make a decision without knowing what

the rest of the students have chosen.

Assume also that everyone knows how to solve the exercise, but it’s long and

requires putting a lot of effort, thus generating disutility. For this reason, the

students will only submit a solution if they expect to get the extra points. Formally,

let E and NE stands for “extra points” and “no extra points”. The preferences of

each student are such that u (S;E) > u (NS;NE).

Assuming there are n ≥ 2 students in the course, find all the NE of the game.

[4] Consider the Tug of War game, but where we dispense with the assumption of an

equal number of players in each team. Specifically, suppose that team 1 has m

players, while team 2 has n where m > n. Determine the NE for the cases we

studied in class, according to:

(a) the baseline preferences

(b) The alternative preferences

Hint : Assuming one of these preferences determines there’s no NE.

Some Answers to the Exercises:
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1) a) either α < 1 and γ < 1, or α < 3 and γ < 0, b) α ≤ 3, c) α ≥ 3 and β ≥ 2, d)

β ≤ 2 and either α = 3 and γ ≤ 1, or α ≤ 3 and γ = 1.

2) a) for (1) {U,D} and for (2) {L,M}, b) for (1) {U} and for (2) {L,M}, c) for (1)

{U} and for (2) {M}, d) they coincide with c)
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